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Abstract

Network measurement at 10+Gbps speeds imposes many restrictions on the resource con-

sumption of the measurement application. In this thesis we describe two novel techniques

that can perform per-flow flow monitoring on high-speed routers; Symmetric Connection

Detection (SCD), and Binned Duration Flow Tracking (BDFT). Many network monitoring

applications are only interested in TCP connections that become fully established, so other

connection attempts, such as port scanning attempts, simply waste resources if not filtered.

SCD filters out unsuccessful connection attempts by tracking the state of connection estab-

lishment for every flow observed. Using an upper bound of 32k bytes of RAM our SCD

experimental results indicate 99+% accuracy with 900,000 active flows. Network operators

require information such as the duration of a flow, or the distribution of flow durations to

track today’s quickly-changing network conditions. BDFT tracks the duration of every flow

in a network, on a per-flow basis, and can report this information in real-time. Experimental

results show that BDFT is over 99.8% accurate with only 352k bytes of memory.
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Chapter 1

Introduction

In this thesis we explore the concept of recording previously unattainable network data on

edge and core routers. Through an approach based on the new field of network algorith-

mics we devise a method of reducing the resource requirements of traditional flow tracking

strategies, and propose a method of tracking the duration of network flows. Our method of

tracking duration can be abstracted to a generalized method of storing state on a per-flow

basis. Research into these topics was completed from late 2004 to late 2006 under the su-

pervision of Dr. Chung-Horng Lung at Carleton University in Ottawa, Canada, and as part

of a Communications Infrastructure and Technology Ontario internship at Alcatel under

the supervision of Peter Rabinovitch.

Our exploration of the world of high-speed routers can begin with a simple analogy.

Internet traffic is somewhat like a car. Stand at one intersection for many days and you

may see the car pass by several times per day. Stand there for many days or years and there

may come a time when the car passes by no longer. After so much time to contemplate the

meaning of the car several questions can be answered; How many trips did it make? What

was the average number of passengers? When was its first trip, its last? Did it make many

trips (like a taxi) or was it low bandwidth (family shopping trips). When tracking network

information the car can be equated to a network packet, and the concatenation of all its

trips can be equated to a network flow.

Defining a network flow has been approached in several different ways in academic pa-

pers, RFCs, and by network equipment vendors. The basic feature common to all definitions

1
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is that a flow identifier is used to define a network flow. Flow identifiers are a combination of

packet header fields or other characteristics of network packets. Network traffic is grouped

into flows based on the observation that all packets which share a common flow identifier

can be classified as belonging to the same flow. Referring back to the car example, one

flow identifier is very clear - the license plate number, and other flow identifiers could be

the make and/or model of the car. An equivalent standard definition exists for network

flows, the standard flow identifier was defined in NetFlow version one as the 5-tuple of IP

source and destination, port source and destination, and the protocol number [1]. Other

flow identifiers proposed in newer versions of NetFlow and other flow tracking products are

based on AS numbers, ingress and egress interface numbers, MPLS labels, and more.

Analysis of the statistics and data generated by tracking and analyzing network flows

is one of the primary mechanisms available to ISPs when making networking engineering

decisions. ISPs therefore desire to have the most fine-grained data possible on their network

traffic. This demand for information from the networking industry has driven an enormous

research effort into methods of generating useful network statistics and data. However, in

spite of the research accomplished, producing data or tracking state on a per-flow basis

remains largely out of our technological reach on high-speed (OC-192 or OC-768) routers.

The reason for this lack of per-flow monitoring capability, and the implied complexity of

per-flow network monitoring, can be demonstrated by revisiting the car analogy. Instead of

a single car, now imagine a busy 10-lane highway, packed with cars traveling over 100kph,

so during a typical rush hour 50,000 cars may pass by. That is about 14 cars per second.

At this rate, identifying a specific car by its license plate number becomes a complicated

task for any person. Likewise, on busy networks the sheer packet rate and number of flows

makes recording accurate and fine-grained network data a challenging task.

Ideally we wish to be able to reduce the processing requirements of traffic analysis and

data collection without sacrificing accuracy. To this end we describe a filtering technique

which is capable of reducing the number of flows, and therefore the computational require-

ments of analysis applications, by up to 95% for average Internet traffic. Like many other

proposed solutions to high-speed network monitoring our solution makes use of a time and
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space efficient data structure known as a Bloom filter [2]. The method proposed in this

thesis, called Symmetric Connection Detection (SCD), is method of filtering network traffic

such that only fully established TCP flows will pass through the filter. SCD uses Bloom

filters to maintain minimal state about every TCP connection attempt. The operation of

SCD can be summarized as follows; TCP SYN packets are associated to flow identifiers, in

a highly compressed format, using two Bloom filters. Once a TCP SYN has been “seen”

from both sides of a connection, SCD will report that the connection was successfully estab-

lished. The unique feature of SCD is its ability to provide very high accuracy while using

very small amounts of memory and CPU time. In section 6.2 we show that using only 32k

bytes of memory SCD can achieve 99% accuracy even in adverse conditions (900,00 active

flows).

Network monitoring applications, such as tracking the duration of TCP flows, can be

optimized by using SCD pre-filtering to filter out flows which are never fully established.

The reduction in processing requirements is due to the fact that in typical Internet traffic the

TCP protocol accounts for 95% of traffic, of which 5-10% is SYN packets ( [3] and section

6.1). Reduction in the number of flows can benefit many applications; for example, an

application which is tracking the duration of flows requires only those flows which are fully

established, and therefore processing any other flows or SYN packets is a waste of computing

and memory resources. To further validate this statement we show in section 6.1 that many

of the SYN packets seen on the general Internet are not valid connection attempts, but

instead are part of DDoS attacks or port scanning. These SYN packets will almost never

become established flows. We show in section 6.1 that filtering these incomplete flows can

reduce the processing requirements of our hypothetical duration tracking software by 95%.

The second focus of this thesis is tracking the duration of network flows on a per-

flow basis. State of the art methods that track the per-flow duration of network flows

on high-speed routers are typically about 5% accurate. For example, NetFlow is able to

report on the duration of flows, but due to the requirement to sample packets, only high-

bandwidth flows are accurately tracked (see sections 2.2.2 and 6.3.2). This inaccuracy puts

ISPs at a potential disadvantage when they require flow duration information to calculate
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the distribution of network traffic according to the application which generated the traffic,

for example, to determine what percentage of their bandwidth is being used by Peer-To-

Peer applications. Determining the application-level content of a network flow normally

requires Deep Packet Inspection (DPI) of critical packets in the flow. Unfortunately DPI

is not available on high-speed routers due to intrinsically high requirements for processing

cycles and memory access cycles per packet. An alternative to DPI is to classify traffic

based on transport level network flow information, such as flow duration, average packet

size, and fan in/fan out [4] [5]. The transport level approach to classifying network traffic

has motivated us to develop a method of tracking individual flow duration that is scalable

to the processing speeds and resource restrictions present on high-speed routers.

Tracking the duration of network flows allows an ISP to focus on specific traffic types

which impact their operational expenses. A simplification to duration tracking can be

made by classifying flows into categories according to their approximate duration. This

categorization allows an ISP to accomplish their main goal of separating very short flows,

short flows, long flows, and very long flows. Equivalently, these duration categories can be

thought of as storing some amount of state about each flow in the network, in this case,

four states in total. Storing state about individual flows on a high-speed router requires a

strategy that is both time and space efficient.

Binned Duration Flow Tracking (BDFT) is a time and space efficient method of tracking

the duration of network flows on high-speed routers. Individual flows are placed into “bins”,

which represent the current state of the flow. BDFT assigns time ranges to each state (e.g.

0-15sec, 15-45sec, 45-75sec, 75-105sec), and moves flows to the next time range (state) on

a periodic basis. Assigning the time ranges to each bin is a complicated process which is

described in section 5.2.5, for this description we will assume some standard time ranges.

A flow which is originally created and assigned the 0-15 second time range is moved to

the 15-45 second range after up to 15 seconds and to the 45-75 second time range after 30

seconds. An operator or external program which wishes to know the duration of a flow can

query BDFT for the current state of the flow. The state of the flow can then be translated

from a state to a duration based on a simple table. BDFT inherits its time and space
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efficiency from the use of counting Bloom filters as the data structure which represents the

bins. The bin data structure along with several other optimizations allow BDFT to achieve

very good performance while using small amounts of memory and computational resources.

In section 6.3 we show through experiments using Internet packet traces that BDFT is able

to report the correct state for flows 99.84% of the time using only 360,448 bytes of memory,

and 99.98% of the time using 720,896 bytes of memory.

1.1 Motivation

The motivation behind our work stems from two factors; first, there is substantial demand

from the ISP industry for better information on their networks, and second, the research

literature contains little information on tracking the duration of network flows. In this

section we explain the motivation from industry, and in subsequent sections we discuss

the lack of literature. In section 2.2, we approach the lack of literature by explaining the

difficulty of per-flow state tracking and in section 2.4 discuss issues with current network

monitoring proposals.

The continual evolution of the Internet creates a dynamic environment for ISPs to op-

erate their network within. Traffic patterns have changed significantly in recent years, from

a history of a few heavily used protocols, the Internet today contains hundreds. Identifying

and managing the transmission of these protocols is the top priority for many ISPs, as bet-

ter network management leads to better utilization, which leads to lower costs. Information

is the key to network management and design, leading us to focus on an information-poor

area for ISPs; flow duration.

Flow duration information can be very valuable both directly to ISPs and indirectly

to other network processing programs. Several papers that have studied the average flow

duration of P2P and content delivery systems report that average flow durations are over

two minutes. The mean duration of eDonkey download connections is 851 seconds [6], the

mean duration of kazaa connections is 130 seconds [7], and the mean duration of BitTorrent

is over 1000 seconds for successful downloads [8]. Flow duration has also been cited in
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numerous papers as a characteristic that can be used to classify flows according to their

application type [9]. To the best of our knowledge BDFT is the only acceptably accurate

and real-time method to track the duration of flows on high-speed routers.

Network operators require the fastest response to problems or new network traffic pos-

sible. For this reason there has always been a desire for real-time reporting of statistics,

but most algorithms have relied on non-realtime off-line processing of exported NetFlow

records, or other large data stores. BDFT allows queries for the duration of a flow in

real-time, without any need for further processing of data.

Many network traffic analysis applications intended for network engineering and other

applications by ISPs require computationally intensive processing of flow records. Given

that many flows are not complete, since they are part of port scanning or other TCP-

based attacks, it is an unnecessary use of resources for flow tracking software to track these

incomplete flows. Therefore, flow tracking software (such as BDFT) should not operate on

raw network flow data streams, but instead should operate in conjunction with our second

development, Symmetric Connection Detection (SCD). By filtering out the up to 95% of

connections that are incomplete from typical Internet traffic, a pre-filtering mechanism

makes previously infeasible flow tracking applications possible. To our knowledge there

are no other incomplete-connection filters that have been published in the literature that

are suitable for use on high-speed routers. To make the operation of BDFT and other

similar algorithms feasible we were strongly motivated to develop a method of reducing

their processing (and memory) requirements.

1.2 Contributions

Our first major contribution is BDFT. Binned Duration Flow Tracking (BDFT) provides

real-time flow duration estimates for all flows and packets received on high-speed (OC-

192 or OC-768) routers. Flow monitoring and duration tracking on high-speed routers

requires strict constraints on the amount of memory and CPU time used, which BDFT

meets by scaling in constant memory and time to millions of flows. In addition, to the
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best of our knowledge, BDFT is the first algorithm able to provide real-time reporting of

flow duration on a per-flow basis on high-speed routers (10+Gbps). BDFT also provides

network operators with summary network information, such as the real-time distribution of

flow durations within their network. Using Internet packet traces to drive our experimental

analysis we show that BDFT is 99% to 100% accurate with memory usage from 11,264

to 360,448 bytes. We plan to publish the BDFT algorithm in an upcomming conference.

Finally, in recognition of the innovation that BDFT represents, Alcatel has filed for a

patent, with Bradley Whitehead as sole inventor, covering many of the concepts in BDFT,

and BDFT as a whole.

Our second major contribution is SCD. Symmetric Connection Detection (SCD) acts as

a filter for incomplete TCP connections, and therefore can pass complete TCP connections

on to a secondary flow processing application. Like BDFT, SCD is designed to operate in

the resource-constrained environment present on high-speed routers. SCD scales in constant

time and space with the number of flows present in the network, and provides gradual and

predictable degradation of accuracy in overload conditions. SCD is the first algorithm

that we know of which provides filtering of incomplete flows on high-speed routers. Using

only 32k bytes of memory SCD can achieve 99%+ accuracy even in adverse conditions

(900,00 active flows). A paper on SCD has been accepted for publication at the IEEE

International Conference on Communications (ICC), to be held in June 2007 in Glasgow,

Scotland. Finally, in recognition of the innovation that SCD represents, Alcatel has filed

for a patent, with Bradley Whitehead as sole inventor, covering many of the concepts in

SCD, and SCD as a whole.

As minor contributions we present a detailed analysis of two publicly available Internet

traffic traces, including the flow duration distribution. We also present a modification to

Time-Decaying Bloom filters (see section 2.3) which allows TDBF to be used to track the

duration of flows.
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1.3 Thesis Outline

The research presented in this thesis consists of the development of the flow processing

strategies, SCD and BDFT. Over the next seven chapters we develop the background,

description, and performance of SCD and BDFT. This thesis is laid out as follows;

Chapter 1 - Introduction In the introduction we describe briefly the goals and operation

of BDFT and SCD. We also discuss our motivation for pursuing new network traffic

analysis strategies. Our contributions to the field are summarized.

Chapter 2 - Background and Related Work Chapter 2 lays the foundations for the

discussions in the rest of the thesis. Traditional flow tracking strategies are discussed,

along with the difficulty of tracking network statistics on a per-flow basis. The diffi-

culty of implementing flow tracking on high-speed routers is explained with a descrip-

tion of router hardware architecture. We also introduce the basics of Bloom Filters

and Time-Decaying Bloom Filters. Published work that is related to our approach to

SCD and BDFT is discussed.

Chapter 3 - SCD This chapter presents the operation of Symmetric Connection Detec-

tion, both from a high-level, simple description of the algorithm and a detailed dis-

cussion of operation. An extension to SCD called Dual-Filter SCD is also presented.

Chapter 4 - BDFT This chapter presents the operation of BDFT, both from a high-level,

simple description of the algorithm and a detailed discussion of operation. Several

extensions, optimizations, and implementation suggestions are discussed.

Chapter 5 - Mathematical Analysis and Design In Chapter 5 we mathematically

analyze the operation of Bloom filters and counting Bloom filters. These results

are then extended to encompass the theoretical performance expectations for SCD

and BDFT. We discuss strategies for designing a BDFT array and SCD filter, and

present an analysis of the computational requirements of BDFT as compared to d-left

hashing [10].
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Chapter 6 - Experimental Analysis The performance of SCD and BDFT are analyzed

using real-world Internet packet traces to drive our implementations of the algorithms.

We present our very positive performance results based on these traces, and also

describe the characteristics of the traces including the flow duration distributions.

Chapter 7 - Concluding Remarks Chapter 7 summarizes our findings and experimen-

tal results. Directions for future work are discussed.



Chapter 2

Background and Related Work

2.1 Router Architecture

The design of a network monitoring application that is intended for deployment on high-

speed routers requires an understanding of the underlying router architecture. A proper

application or algorithm design must take into account several important restrictions that

are introduced by the architecture layout. This means that while some design considerations

are hardware-specific, many routers share the same basic architecture and therefore the same

design restrictions. In this section we will describe the generalized router architecture shown

in Figure 2.1 and discuss the implications of this architecture on algorithm design.

One of the primary resource restrictions on high-speed routers are memory limitations.

The restrictions created by both memory capacity, and the access time of DRAM and

SRAM, have been presented in several papers [11] [12]. However there are several other

lesser known restrictions which can be presented after a brief description of router hardware.

Router hardware is designed around a type of distributed computing concept; a series

of hardware modules communicate with each other through a high-bandwidth internally

switched network (backplane). The main hardware modules are CPU cards and line cards,

each performing a distinct functionality. Line cards present external connectivity to the

router (e.g., Ethernet, OC-48), and have on-board packet processing and switching capa-

bilities. The line cards are typically referred to as the “data path”. CPU cards control the

overall operation of the router, implement routing protocols, and perform processing that

10
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Figure 2.1: Generalized router architecture

affects the router as a whole. CPU cards are typically referred to as the “control plane”.

Line cards are typically largely SRAM based, and can be augmented with extra hardware

such as Content Addressable Memory (CAM). Processing on a line card is accomplished by

either custom ASIC hardware or one or more network processing units (NPUs).

The main challenge in implementing a network monitoring algorithm that does not em-

ploy sampling is that to acquire direct access to all packet data it must run on a line card.

To run on a line card the processing performed by the algorithm must use simple operations

only, e.g. bitwise operators (AND, OR, etc), memory read/write, and compares, and mini-

mal branching logic if any. In addition to the computational limitations, memory is limited

to only a few accesses per packet depending on line speed and memory speed, meaning that

only limited portion of the entire packet may be accessed. Memory space is also severely

limited, as SRAM is expensive. An algorithm meeting these processing requirements and

memory restrictions can be implemented as an NPU program or in hardware. As a result of
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these severe limitations a good compromise design can offload secondary processing to the

CPU card, but switching plane bandwidth must be conserved, so only a small percentage

of the total line card traffic may be transmitted to the CPU card. A typical amount is 128

bytes for every 10-100 packets, as defined by sFlow [13].

For algorithms implemented on the CPU card the available memory and processing time

are less limited. Available memory can be megabytes in size, but the memory is DRAM,

so accesses cannot be on a per-packet basis. The CPU used on CPU cards is typically a

general processing unit, capable of executing most instructions. Also, typically more CPU

time is available than on a line card.

BDFT is a hybrid algorithm which is implemented at both the data path level and

control plane, see section 4.3.4. SCD is intended to be implemented at the data path level.

Other example algorithms that can operate at the data path level are Space Code Bloom

Filters [12], and Bitmap Algorithms for Counting Active Flows [14].

2.2 Flow Monitoring

Flow monitoring as a concept is driven by the need to gather fine-grained information from

a network. As discussed in the introduction, the definition of a flow is described by the flow

identifier. The flow identifier is typically defined as the 5-tuple of; IP source and destination

address, TCP source and destination port, and protocol number. In this section, we discuss

the flow monitoring concept in detail explaining why flow monitoring is hard to design

for high-speed routers, present currently used strategies for flow monitoring on high-speed

routers, and discuss flow monitoring techniques.

2.2.1 Flow Monitoring on High-Speed Routers

The design and implementation of flow monitoring on a high-speed router demonstrates the

concept of scalability and its consequences in the real-world. A task that is trivial when

a small amount of network traffic is present, and therefore a small number of flows, can

become impossible to accomplish when the number of flows grows large. The naive solution
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of simply storing all flows in an array quickly becomes impractical when the basic flow

maintenance operations are considered. For example, if there are one million flows in an

array, then for every packet received by the router a lookup through all one million records

must be performed to try and match the packet to a flow. If a few packets are received per

second this may be feasible, but on a 5Gbps link with a 625 byte average packet size, one

million packets will be received each second, resulting in CPU or memory overload. The

scalability problem is also discussed further in several networking and data streams papers

(section 2.4.1 and [14]).

Due to the scalability issue, most of the network monitoring implementations which exist

today do not support per-flow monitoring for all flows. Instead, the simplest monitoring

implements counters which track single statistics such as, the number of bytes received and

sent on an interface, or the number of packets. These counters are then exposed to network

operators through SNMP. Another approach is Juniper network’s implementation of a very

coarse-grained flow monitoring counter with per-prefix accounting. In pre-prefix accounting

a counter is associated with a specific IP address prefix, and all packets or the number of

bytes which match that prefix are counted [15]. These counters are 100% accurate and can

therefore be used to drive per-byte billing systems for ISPs.

The Real-Time Flow Monitoring (RTFM) specification describes a fine-grained, flexi-

ble, and programmable architecture for monitoring network traffic [16]. This architecture

processes every packet, matching it to an existing flow record or creating a new record if

the flow is not found. Many different statistics can be calculated based on the resulting

records, with no loss of accuracy. However, architectures based on per-flow association of

packets, such as RTFM, can not scale to high-speed links such as OC-192 or OC-768 [14].

Currently specialized hardware is required to support lower speed links such as OC-48 [17].

2.2.2 NetFlow and Sampling

NetFlow tracks individual flows by maintaining a table of flow records [1]. Each record must

contain flow identification information, and may contain additional information such as the

number of bytes for the flow, number of packets, time stamps for the first and last packet,
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and additional fields as required. Flows are stored in the table until they expire, typically

after 15-68 seconds of inactivity or after 30 minutes of continuous activity. Upon expiry

the flow record is removed from the table and sent to an external storage server called a

collector. Statistics and information are typically only available after offline processing by

the collectors, due to the large volume of NetFlow records.

The maintenance operations for the NetFlow flow table are shown in Figure 2.2 To

maintain the flow table, packets are read from the network and undergo a classification

process to try and associate them with a currently existing flow record. If a flow record

does not exist for the flow then a new one is created. If there is no room in the table for

the new flow then an older flow is exported to a collector to make room for the new flow. If

the flow already exists in the flow table then the counters and other statistics for the flow

are updated. Several steps in maintaining the flow tables could be expensive; classifying
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the packets, selecting a flow for removal, and the storage space for the tables themselves.

Ensuring scalability to 10+Gbps speeds requires a different approach to the design of

the monitoring application. The industry standard flow reporting solution, NetFlow, is

implemented on edge and core routers using sampling of packets to reduce processing and

memory requirements. Basic sampling selects one out of every n packets for processing,

thus introducing substantial inaccuracy in many network statistics [18]. Several techniques

have been proposed to increase the accuracy of sampled flow statistics [19], or improve the

accuracy for specific applications [20]. These techniques are limited to solving a specific

problem, and can only place an upper bound on the sampling induced inaccuracy.

2.2.3 Goals and Issues

An ideal flow monitoring system would have the following characteristics;

• Flexible - Any data set can be recorded for analysis

• Fine-Grained - Information is available on a per-flow basis

• Scalable - Can be implemented on routers with OC-192 and OC-768 interfaces with

few resources

• Real-Time - Information and statistics are available through real-time queries

• Low Export Bandwidth - Retrieving information from the router requires little band-

width

Most existing flow monitoring tools fail on one or more of these points. NetFlow versions

one and five have several drawbacks. First, the concept of a flow is fixed, and cannot be

modified to suit the requirements of the ISP (this point has been addressed to some extent

in NetFlow version 9). A flexible flow definition is perhaps one of the hardest of the ideal

points to accomplish. Second, NetFlow does meet the requirement to be fine-grained, but to

achieve the scalability required to be implemented on high-speed routers NetFlow requires

that sampling be performed. Sampling introduces a high error rate into the NetFlow output
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making it unable to accurately report on certain statistics, such as flow duration. The last

two points, real-time reporting and low export bandwidth are linked for NetFlow. NetFlow

operates by exporting all flow records off the router to an external collection device. This

export process is one of the largest drawbacks to NetFlow since the export bandwidth

required has been estimated to be 132Mbps for a 10Gbps link. This means that an entire

OC-3 connection is required just for the NetFlow output. Processing this volume of data

cannot be done in real-time and requires large processing resources on the collection devices

in addition to consuming valuable network bandwidth.

2.3 Bloom Filters and Time-Decaying Bloom Filters

A Bloom filter is a bit array which supports set membership tests by using k independent

hash functions to address k bits in the bitmap [2]. To insert an item, the k bits the item

hashes to are set to 1, and therefore to check if an item is a member of the set, all k bits

must be 1 if the item is a member of the set. Bloom filters provide a time and space efficient

means of testing if an item is in a set by accepting a small probability of error in the lookup

result. Bloom filters can return a false positive, meaning an item is in a set when in fact it

is not, but will never return a false negative (an item is not in a set when in fact it is). False

positives, false negatives in counting bloom filters, and other properties of bloom filters are

further discussed in chapters 3, 4, and error rates are analyzed in chapter 5.

A survey of the network applications of Bloom filters is [21]. Attig and Lockwood

have shown that a Bloom filter can be implemented in hardware and can scale to OC-192

(10Gbps) speeds [22]. Attig and Lockwood use a Bloom filter based method to detect

patterns in network traffic and report on suspicious flows. A low power strategy is low

power Bloom filters [23].

Bloom filters support additions of new items to a set, but do not support removals.

To support removals a new type of Bloom filter was proposed called a counting Bloom

filter [24]. These Bloom filters have all the characteristics of normal Bloom filters, with

the addition of a new type of error; a false negative caused by counter overflow. Counting
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Bloom filters are further discussed in section 5.2.4.

Several other types of Bloom filters have been proposed, and the use of Bloom filters

for a variety of tasks has increased substantially recently.

Space-Code Bloom Filters (SCBF) provide per-flow accounting of the number of packets

in a flow [12]. SCBF is both time and space efficient and is designed to run at the data

path level of a high-speed router and use SRAM for storage. Queries can be made of the

SCBF of the form “How many packets were received for flow identifier X”. In SCBF, the

normal k hash functions of a Bloom filter are replicated into M groups of k independent

hash functions. When a flow arrives, one of the M hash groups is chosen at random and

written to the SCBF. SCBF operation is divided into measurement intervals, at the end

of an interval the SCBF is backed up to external storage, and can be queried at a later

time. To determine the number of packets in a flow, within a measurement interval, an

estimator table is used to relate the number of set hash groups for the flow to the expected

packet count. Multi-Resolution SCBFs are also discussed, which are useful for reducing

the impact of counter overflow errors. The bins in BDFT are currently implemented using

counting Bloom filters, but could be implemented with SCBFs. A major implementation

advantage of SCBF over counting Bloom filters is the characteristic of blind streaming,

where incrementing the value of a “counter” requires only memory writes and no reads.

Time-Decaying Bloom Filters (TDBF) originate in the data streams field and represent

a way to track a distribution of items with regard to time. TDBF are based on counting

Bloom filters, incrementing the counters corresponding to an item’s hashes each time an

instance of an item arrives. The counters are then decremented based on a time-decaying

function once per decrement interval. In section 6.3.1 we present a modification to TDBF

that allows the duration of individual flows to be tracked. The performance of the modified

TDBF is then compared to BDFT performance.
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2.4 Published Work

In this section we discuss published literature that is related to SCD and BDFT. For both

SCD and BDFT, there is no direct previous work that proposes methods of filtering incom-

plete flows or tracking the duration of flows. Therefore, instead of directly related previous

work we present work that uses concepts similar to those in SCD or BDFT to accomplish

other network monitoring tasks. This section is split into three parts, first we present an

interesting link between data streams and network monitoring; second we discuss work

related to SCD; and third discuss work related to BDFT.

2.4.1 Related Data Streams Publications

Data streams are a generalization of network and database traffic to include common char-

acteristics of all high-bandwidth data transmission paths. The data streams field stems

from a paper that relates the space requirements of selection and sorting algorithms to the

minimum number of passes required over a data set [25]. In more recent work, S. Muthukr-

ishnan defines a data stream as a stream of information that is received at a very high

rate [26], with the following list;

“High rate means it stresses communication and computing infrastructure, so it

may be hard to:

• transmit (T) the entire input to the program,

• compute (C) sophisticated functions on large pieces of the input at the rate

it is presented, and

• store (S), capture temporarily or archive all of it long term.”

This definition of a data stream covers some of the fundamental challenges of most

network monitoring applications, presented as scalability issues in section 2.2.3. Network

monitoring must ideally; transmit (T): act on all network data; compute (C): record statis-

tics or perform other scanning on the information; and store (S): store the results of all

processing at fine granularity. One additional requirement that exists in many network
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monitoring applications is real-time reporting of monitoring results. This requirement typ-

ically exists in security-critical applications, and adds additional computing requirements

to the monitoring application’s CPU loading.

The work on data streams potentially offers a way to generalize work on databases,

network streams, and other information streams such that some conclusions about one

stream type can be applied to other stream types. However, there has been no data streams

work related to maintaining flow duration on a per-flow basis. Most of the work in data

streams has been focused on database and data mining applications, and as a result there

has been no work on network-oriented applications such as tracking network flow duration

on a per flow basis. The concept of a flow duration is specific to network traffic, and can

not be generalized to, for example, database record inserts and deletes (and vice-versa).

Data streams researchers have published a method of maintaining dynamic quantiles

that can be applied to tracking flow duration on a global (not per-flow) basis [27]. A

number of data streams algorithms have been developed to track quantiles based on a

numeric data base record field. It has been shown that there is an algorithm to find all the

quantiles in O(N) time (worst-case) [25]. For the case of an insert-only data stream this

has been reduced to O((log eN)/e), where e is the error [27].

Adapting a data streams algorithm to track the duration of current network traffic

requires an algorithm which allows both inserts and deletes. Network flow duration infor-

mation can be modeled as a database containing active flow records with flow identification

information and their current duration (e.g. start time and last update time). For each new

packet that arrives in the flow, the database record is modified to the current flow duration.

When a flow is terminated its database record is deleted. The result is a database that

contains the duration of all active flows in the network. Using this model the data stream

quantiles or other approaches can be applied to flow duration.

Flow duration quantiles can be calculated for a flow duration database using the RSS

(Random Subset Sum) algorithm of A. Gilbert, et al [28]. RSS utilizes a random sampling

method to track the quantiles of a large set of data with a small amount of error. For

a specific database record attribute (e.g. flow duration) a maximum range is established,
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and the range is broken down into evenly spaced segments. A number of random sets are

created with each segment having a 50% chance of becoming a member of a set.

2.4.2 Work Related to SCD

After an extensive survey, to the best of our knowledge there is no work directly related to

filtering incomplete TCP flows out of network flow data in real-time. This is perhaps due

to the relative simplicity of the problem when infinite resources are available to filter traffic.

In this section, we discuss other work that has laid the ground work for our extension of

Bloom filters and approach.

Stateful packet filters are able to track the connection state of TCP sessions, examples

of these are [29] [16] [30]. From the perspective of resource consumption, these stateful

filters are equivalent to tracking all flows individually. Storing per-flow state makes these

applications very flexible in their feature set, but also requires memory on a per-flow basis.

As a result, these applications are unable to process packets at the line speed of a 10Gbps

edge router due to, the requirement to use DRAM to store the flow information, and the

computational resources required for flow lookup. It will be shown in section 6.2 that even

when a stateful filter uses optimization techniques such as a very large hash table to increase

flow lookup speed, SCD provides an order of magnitude better performance.

Since SCD focuses on connections that are established, and the opposite problem is

detecting connections that are never established, the research into detecting port scanning

contains some work that is similar in concept to SCD. However, it should be understood

that detecting incomplete connections and reporting complete connections are two different

problems. SCD is able to report fully-established connections, but without further process-

ing SCD is not able to report half-open connections. Paxon describes a system called Bro

which detects port scans by tracking the number of connection failures for specific hosts [31].

TCP SYN, FIN, and RST packets are used by Bro to track the state of every connection

on a per-flow basis (see section 3.1 for a brief description of TCP). Tracking per-flow state

requires the use of DRAM to store the large amount of state, so Bro is limited to lower-speed

networks.
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Weaver, Staniford, and Paxon present a method of containing scanning Internet worms

by detecting their port scanning attempts [32]. Again this paper focuses on port scan

detection, not established connections. The authors mention using Bloom filters as an

approximation cache, but not in the context of tracking connection attempts. Their imple-

mentation uses an associative cache to track external connections, and requires a notion of

internal and external IP addresses, which would result in inefficient operation on edge or

core routers.

2.4.3 Work Related to BDFT

To the best of our knowledge there is no prior work which allows flow duration to be tracked

on a per-flow basis, and for all flows, BDFT is the first algorithm to do so. For this reason

we have no direct comparison to existing algorithms. In this section we discuss any work

that is related to any of the concepts used in the design of BDFT.

Multistage filters, presented by Estan and Varghese, are a method of counting the

number of packets in a flow [18] [33]. The naive algorithm to count the number of packets

uses an array of counters with a hash function that maps flow identifiers to counters, such

that when a packet is received its corresponding counter is incremented. Estan and Varghese

extend this concept to the use of multiple arrays of counters with an independent hash

function for each array. Each packet received triggers an update of the counters in each

array which correspond to the packet’s flow identifier. Counters are selected using the hash

function associated to each array of counters, with each hash function being independent

of the others. When performing an update (increment) to the counters Estan and Varghese

propose a conservative update where the counters are updated to “the maximum of their

old value and the new value of the smallest counter”. This multi-stage update reduces the

chances of false positives caused by many different small flows having hash collisions to the

same hash value in one array of counters. This concept of using multiple independent hash

functions is similar to the operation of counting Bloom filters, which BDFT uses as the

basis of its bins.

Estan, Varghese, and Fisk developed an algorithm to count the number of active flows
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on a high-speed link [14]. They present a family of bitmap algorithms which use very low

amounts of memory, but operate with significant accuracy. They suggest the use of two

bitmap data structures; multi-resolution bitmap, and adaptive bitmap. All bitmap algo-

rithms operate on the principal of using a hash function to map a packet’s flow identification

information to turn on a single bit in the bitmap. The number of active flows can be tracked

with a simple counter and a test to see if a flow’s bit is already on, in which case the counter

is not incremented. Removal of flows can be accommodated by turning the bitmap into

an array of counters. Multi-resolution bitmap uses a scheme of dividing the bitmap into

regions of update likelihood. High likelihood (low resolution) regions are likely to receive

updates, whereas high resolution regions are unlikely to receive updates. To count the total

number of active flows the highest resolution region with a significant number of flows can be

counted and multiplied by the likelihood of an update to that region. This paper highlights

the usefulness of bitmap-type algorithms for measuring traffic information on high-speed

routers.

As mentioned previously, NetFlow has significant problems achieving high accuracy for

flow statistics due to the requirement to sample. Estan, Keys, Moore, and Varghese have

proposed a number of significant changes to the design of NetFlow to improve performance

when the router is under attack, and improve collaboration with external network monitor-

ing tools [19]. At the heart of their proposal is the idea to vary the sampling rate according

to the current traffic load, resulting in the ability to efficiently use and cap the memory

and CPU resources used by NetFlow. Making their algorithm work requires the use of time

bins to maintain the accuracy of flow statistics. However, the use of binning means that

“the timestamps in flow records can not be used directly to derive flow duration informa-

tion.” BDFT extends the idea of time bins to group flows according to their duration. By

reporting estimated flow durations BDFT is complimentary to the proposals in “Building

A Better NetFlow.”

Counting the number of active flows from sampled flow statistics has been shown to

be infeasible. Duffield, Lund, and Thorup devised a clever work around to this problem

by including the use of protocol-specific information in their algorithms to estimate flow
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distributions [20]. For TCP flows the NetFlow records are checked to see if the SYN flag

(or other indication of the start of a flow) was present in the packets sampled for the flow.

This information is used to estimate the total number of flows based on the sampling rate

and number of sampled flows that contain a SYN. BDFT follows this example by making

use of protocol-specific information to increase the accuracy of its flow duration estimates.

BDFT makes use of further TCP-specific flags; FIN, and RST.

In SIGCOMM 2006 Bonomi, et al. [34] published a method of tracking the state of

network flows which is similar in function to BDFT abstracted to track state instead of

duration [34]. “Beyond Bloom Filters” describes the use of Bloom filters and d-left hashing

to enable per-flow tracking of state in a network. They present two variations of a state

tracking system which use Bloom filters. Their first method, called Direct Bloom Filter

(DBF), uses a single counting Bloom filter to store a set of <flow, state> pairs. In DBF,

to lookup the state of a flow, the current state of the flow is required or all possible states

must be searched. The probability of false positives in DBF is expected to be high due to

the requirement to perform many searches on a single heavily loaded filter. If the state of

the flow is not known for searches and removals, as is the case when tracking flow duration,

the DBF is not suitable. Their next approach uses counting Bloom filters to store both a

count and a state in each cell corresponding to a flow’s hashes, called Stateful Bloom Filter

(SBF). If a cell has a count greater than one, then a collision has occurred and that cell can

be ignored. State lookups will succeed if at least one of the cells has a count of exactly one.

For SBF the probability that a cell will have a multiplicity of two is quite high, resulting in

the SBF returning “dont know” for the state of many flows. Their last approach is based on

d-left hashing [10] and fingerprints. Each cell in the d-left hash stores the fingerprint and

the state of the flow. There are also proposals for eliminating the probability of a fingerprint

collision between the cells. The d-left hashing approach has the potential to be very accurate

up to about 80% memory efficiency, but will require higher computational resources than

BDFT. The computational efficiency of BDFT, and the d-left hashing based approach, are

analyzed in section 5.5. Beyond Bloom Filters was published late in the development of this

thesis, after the research phase was complete. For this reason the error-rate performance
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of BDFT is not compared to the “Beyond Bloom Filters” proposals through experimental

analysis, and is left for future work. We expect that due to the generalized nature of these

proposals a specialized method of tracking flow duration such as BDFT will offer higher

performance.



Chapter 3

Symmetric Connection Detection

Symmetric Connection Detection (SCD) provides a 95% reduction in the number of flows

which must be tracked and processed by a per-flow network monitoring algorithm. This

reduction is accomplished by reporting when a TCP or other connection-oriented connection

attempt is very likely to result in a fully established connection. When used as a filter, SCD

is able to filter flows which are never fully established, and therefore pass only those flows

which are fully established to a secondary processing algorithm. In section 3.1 we give a

high-level overview of the operation of basic SCD, and in section 3.2 we describe an extension

to SCD to improve accuracy. Chapter 5 provides a detailed analysis of SCD performance

and design criteria (e.g., Dual-Filter SCD time ranges) which complements the high-level

overview in this chapter.

3.1 Connection Detection Overview

Two fundamental requirements can be identified for any algorithm that implements a filter

which passes only complete connections. First, every network packet must be processed and

some amount of state must be stored for every connection establishment attempt. Storage

of the connection state is necessary for the algorithm to track the connection progress of

the endpoints, and determine when a connection is either fully established or is very likely

to become fully established. Second, a detection mechanism must decide when the flow

establishment process is complete by monitoring or comparing the state of all flows.

25
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Based on these two fundamental requirements the basic operation of SCD is straight-

forward to describe. SCD stores the state of all connection attempts and performs a com-

parison on the connection state to determine when a connection has been established. SCD

can report the current connection status in real-time, every time the state of a flow changes.

The connection status is reported as a boolean value; true if the flow is now established,

and false if it is not yet established. Connection information can then be used to filter or

pass packets for that flow to a higher level monitoring system, or the statistics can simply

be logged and provided to network operators.

The process of tracking the connection state may be specific to the underlying protocol

being tracked. In this section, we assume that the underlying protocol is TCP, and therefore

begin with a short description of the TCP connection process and how it relates to SCD. To

establish a TCP connection a three-way handshake process takes place; each computer sends

a SYN, and the initiating computer sends a SYN-ACK to complete the connection [35].

Once the SYN-ACK is received the connection process is finished and the TCP session

is fully established. Tracking the establishment of a TCP connection therefore requires

keeping track of all three states, however this can be simplified to two states with the

following observation. From a point in the middle of the route between the connection

endpoints the receipt of SYN packets from both sides of a connection implies that both

computers can reach each other and want to establish a connection, strongly indicating

that the connection will be established with a completing SYN-ACK. SCD makes use of

this observation and defines an established connection as one where both sides have received

a SYN from the other side but not necessarily a SYN-ACK. Therefore SCD processes only

TCP SYN packets, or an average of about 1 in 20 packets (TCP SYN packets are about

5% of network traffic as discussed in section 6.1).

The problem of tracking connection establishment can now be defined as the following

question; when a TCP SYN is received from one side of a connection has the other side

already sent a SYN? If so then the connection is established, if not then store the fact that

this side of the connection has sent a SYN. To answer this question SCD keeps state on

all SYN packets that have been sent and the direction that they were sent in. Direction
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is determined by comparing the source and destination IP addresses, e.g. if source IP is

greater than destination IP then the packet is assigned direction 1, and if source IP is less

than destination IP the packet is assigned direction 2. Storing the flows which have sent a

SYN in a specific direction could be accomplished through the use of many different data

structures, but many potential data structures would lack sufficient performance to be able

to keep up with the requirement to perform a search and possibly an insert on every SYN

packet. Therefore, the data structure must be time and space efficient, and ideally would

support searching and inserts that scale in constant time with the number of items stored.

Bloom filters are such a data structure.

SCD is designed to operate in a resource-limited environment, and undergo gradual

degradation of accuracy as resources become more limited. This operation is accomplished

through the use of Bloom filters. The only data storage required by SCD is the SYN-

direction information for each flow. To meet this storage requirement we employ two Bloom

filters, one filter for each SYN direction. Bloom filters represent a set that can be tested

for membership. Mapping this concept to our problem can be done as follows; when a SYN

is received, test the Bloom filter for the opposite direction to see if a SYN was sent from

the other side; if so, the connection is established. If a SYN has not yet been received from

the other side, then the connection is not yet established, and this is either the first SYN

packet in the connection or the other side is not responding. If the flow was not already

stored in the filter for its direction it is added. See section 5.3 for a detailed analysis of the

theoretical performance of SCD and filter sizing guidelines.

Figure 3.1 is a flow chart describing the processing of a TCP SYN packet by SCD, with

the following steps:

• 1. Compute Src > Dst: The source and destination IP addresses are compared

as unsigned integers to determine which address is greater, source or destination. If

they are equal the packet is assumed to be corrupt, and is ignored.

• 2. Lookup IP: The Bloom filters are queried to see if a SYN packet was sent in

the opposite direction for this flow, e.g., if the incoming packets source IP is greater
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Figure 3.1: Flow-chart of SCD operation

than the destination IP, then the Bloom filter for the opposite direction (Dst > Src)

is queried. The packet is used to generate a number of hashes which are used to query

the Bloom filters. The number of hashes used is a parameter.

• 3a. Connection Established: If the Bloom filter returns a positive result to the

query, then it can be concluded that the connection is established, to a high degree

of accuracy.

• 3b. Add to filter: If the Bloom filter returns a negative result the corresponding

Bloom filter is updated with the flow, e.g., if the incoming packets source IP is greater

than the destination IP, then the flow is added to the Src > Dst Bloom filter.

A potential problem arises when continual operation of SCD is considered. If left

unchecked, the Bloom filters representing each direction would eventually become full and

false positive error rates would climb to unacceptable levels. To avoid this situation the

Bloom filters can be cleared of all their data on a periodic basis. The length of this period

is the third parameter of SCD, the maximum connection time. The maximum connection
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time describes the maximum time that a TCP connection can take before it is no longer

tracked by SCD. If the connection establishment exceeds this time the connection becomes

a false negative due to the filters being cleared. A false negative occurs if the connection

state is lost when the filters are cleared, because the recorded state verifying that the origi-

nal SYN was sent is erased, resulting in SCD reporting that the flow was never established

(a false negative). This raises a potential issue; the minimum connection time that will

report a false negative is potentially 0 if the original SYN packet was received by SCD just

before the filters were cleared. We call the minimum time that a TCP connection can take

to complete before being lost when the filters are cleared the lower bound of the maximum

connection time. This leads us to propose an improvement over basic SCD, dual-filter SCD.

3.2 Dual-Filter SCD

The connection establishment phase of TCP can range from a few milliseconds to several

minutes. This extreme variability in the connection establishment time for TCP is one of

the major sources of error in SCD. Connections which take much longer than normal to

complete (more than a few seconds) can become false negatives if they exceed the lower

bound of the maximum connection time. Dual-Filter SCD reduces the number of errors

caused by this variability by raising the lower bound of the maximum connection time from

zero to half of the upper bound of the maximum connection time.

Dual-filter SCD modifies basic SCD from one Bloom filter per direction to two Bloom

filters per direction. Each Bloom filter contains the state of connection attempts for a non-

overlapping portion of the total range of time. For example, if the SCD maximum time is 10

seconds one filter would initially cover the 0-5sec range and the other would track 5-10sec.

Flows are moved between filters by an aging process, which will be described below. After

10 seconds of running time the newer filter will contain flows for the past 0-5 seconds, and

the older filter would contain flows from 5-10 seconds. During operation of SCD new SYN

packets are recorded in the newer filter, and the older filter simply maintains the state of

older connection attempts. Upon receipt of a new SYN packet, queries for membership to
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check if the connection is now established are performed against both the older and newer

filters.

As with standard SCD, Dual-Filter requires an aging process to prevent the build up of

out of date flow data and maintain accuracy of the filter. Each filer has a lifetime which is

half of the maximum connection time. Aging occurs when a filter has reached the end of

its lifetime, which is five seconds in our example above. The aging process moves the newer

filter to the older position (which can be as simple as updating a pointer), and clears the

older filter and moves it to the newer position.

The aging process is as follows, and is repeated once for each direction;

1. The older filter is cleared. Any flow information that was in this filter is lost.

2. The newer filter is aged to become the older filter, possibly by simply updating a

pointer

3. The older filter is recycled to become the newer filter.

As a result of the dual-filter setup, flows that are received just before the aging pro-

cess takes place will be moved to the older filter. Once in the older filter the connection

state will be maintained until the next aging occurs, therefore the lower bound of the max-

imum connection time is increased to half the maximum connection time (5 seconds in our

example).



Chapter 4

Binned Duration Flow Tracking

Binned Duration Flow Tracking (BDFT) is a method of tracking the duration of network

flows on a per-flow basis, for every flow that passes through a network device. In this section

we present a high-level overview of the operation of BDFT, followed by a detailed description

of permissible BDFT operations. Extensions to BDFT which can improve accuracy and

computational performance are also presented. Chapter 5 provides a detailed analysis of

BDFT performance and design criteria (e.g., bin time ranges) which complements the high-

level overview in this chapter.

4.1 Flow Duration Tracking

The operation of many network measurement applications can be abstracted to a require-

ment to store some amount of state about individual flows. The storage of state on a

per-flow basis presents a challenge on high speed routers due to the requirement to store

both the state itself and the flow identification information related to that state. In the

case of NetFlow-style flow records this per-flow state is a minimum of 21 bytes for the start

and end timestamps (the state), and the flow-identification information (standard 5-tuple

of IP source and destination, port source and destination, and protocol type). Given that

standard Internet-mix traffic has about 200,000 active flows per Gbps, this results in peak

memory usage of 42MB on a 10Gbps router. This memory requirement is beyond of the
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current capacities of SRAM, making the NetFlow based approach infeasible based on mem-

ory usage alone, with the processing requirements only adding to the infeasibility. BDFT

provides a clever workaround to the problem of storing per-flow state.

Duration-BDFT is a data structure and algorithm designed to track the approximate

duration of all TCP flows seen on a high-speed router. BDFT can also be extended to any

network measurement application where minimal state is required, and where the opera-

tions required are adding flows, removing flows, and querying for a flow’s state. Compared

to NetFlow, BDFT reduces the memory requirements in two novel ways. First, the flow

identification information is simply not stored in memory. This approach to network mon-

itoring, not storing the flow identification information, is one of the primary contributions

of BDFT, and is explained further below. Second, the per-flow state information is stored

by splitting the flows into a number of bins, each bin is associated with some state, so all

flows in a bin share some common characteristic. Bins are the only data storage component

of BDFT. In duration-BDFT each bin represents an independent and arbitrary length of

time, therefore the bin that a flow is in corresponds to its current duration. A bin can be

represented and stored using an arbitrary data structure, however selection of an appro-

priate data structure is a critical design decision. The selected data structure must allow

the flow’s state to be saved, queried, and removed, without any requirement to store flow

identification information.

In duration-BDFT (from this point all references to BDFT are of the duration variant),

counting Bloom filters were selected as the default bin data structure. The selection of a

Bloom filter variant as the bin data structure allows the intrinsic operation of Bloom filters

to be used to our advantage, by replacing the flow identification information with hashes.

Counting Bloom filters operate by selecting a number of independent hash functions which

are used to index counters in an array, incrementing them on insert, and decrementing

them on delete. When a packet is received the hashes are calculated based on various flow

identification information contained in the packet header. The hashes are the only infor-

mation required to index the flow’s location in the filter. Therefore, all flow identification

information is calculated on-the-fly from the current packet and the hash values, not stored
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in memory. In our reference implementation of BDFT, counting Bloom filters were used;

however, it is possible that higher performance could be achieved from the use of other data

structures such as space code Bloom filters.

BDFT’s bins are its only data storage component, so the execution of BDFT involves

operations that modify, or lookup, the data stored within the bins in response to external

inputs. These operations are triggered by TCP packets received in the data path of a router

(or other networking device) with the SYN, FIN, or RST flags set. The search operation is

normally triggered by an external operator or software agent. When a TCP SYN packet is

received, the corresponding flow is entered into the first bin, and is then automatically aged

to successively older bins until the flow is removed when a FIN or RST packet is received.

To determine the current or end-point duration of a flow, BDFT determines the bin number

that the flow is in, which is then translated into a range of time (or the midpoint of the

bin) and returned to the requester. The next sections describe the operations of BDFT in

detail.

4.2 BDFT Operations

In this section we describe the operations that define how BDFT maintains duration infor-

mation for all flows in a network. We also describe how BDFT can be queried to determine

a flow’s duration. Figure 4.1 shows the operations described below (Figure 4.2 and Figure

4.3 also show aspects of these operations and may be helpful references);

Add a Flow Flows are added to Bin #1 when they enter a “partially established” state,

which we define a receipt of a SYN packet from either side of a connection (1st or 2nd

step of the TCP 3-step handshake). Flows are added by creating k hashes from the

flow identification information, searching all bins to see if the flow already exists, and

if not incrementing the counters in Bin #1 corresponding to those hashes. Searching

all bins can be avoided by using SCD pre-filtering as described in section 4.3.1, and

flows are only added on the 2nd step of the handshake when filtered with SCD. When

adding a flow to a counting Bloom filter, it is possible that one or more counters are
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Figure 4.1: Diagram of BDFT operations

already at their maximum value. In this case counters which are at the maximum

value should be left at the maximum, and all other counters incremented. Ideally each

flow should only be added once, and flows which are never established should not be

added (e.g. port scans). Flows which never complete the establishment phase must

be removed from the filter.

Remove a Flow TCP packets containing a FIN or RST flag signal the end of a flow,

at which point the flow is removed from its bin. Flows are removed by searching

from the shortest-duration bin to the longest. When the flow is found the counters

corresponding the flow’s hashes are decremented. The counters corresponding to the

flow must be decremented every time a FIN or RST is received, until one of the

counters reaches zero. This results in an aggressive removal of flows; e.g. some flows

may be removed prematurely, due to multiple FIN packets being sent. A solution

for multiple removal of flows is presented in section 4.3.1. Bins are searched starting

with the youngest based on the observation that 50% of flows last less than 2 seconds,
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and 90% last less than 45 seconds [36], so the flow will most likely to be found in

the youngest bin. An alternate removal strategy which reduces errors due to false

positives is presented in section 4.3.3. When a flow ends, a notification can be sent to

an external agent.

Aging BDFT maintains its per-bin state by “aging” - the process of moving all flows in a

shorter-duration bin to the next longer duration bin. When a bin is in a state where

it needs to be aged we say that it is “expired”. Each bin represents a time range

(duration) for flows. The time range which each bin represents must be selected

based on the accuracy required vs. memory requirements and is discussed further in

section 5.2.5. As time advances during the operation of BDFT, the flows in a bin

become older, until the oldest flow in the bin is older than the time range of the bin,

at which point the bin must be aged. The aging process is key to BDFT, it allows the

maintenance of the state for all flows. By keeping flows in counting Bloom filters, and

aging the filters in time, no flow-specific information such as flow start time needs to

be kept. When a bin is expired the flows that are currently in the bin are moved to the

next longer duration bin, as shown in Figure 4.2. Depending on the implementation

of the bins this may mean individually copying counters to the next bin, or simply

updating a pointer to each bin.

Search for a Flow Searches are performed by an external agent submitting flow identifi-

cation information which can be used to generate the k hashes. Searches are performed

starting with the oldest bin first, and moving to sequentially younger bins, until a bin

is found where all counters are greater than zero corresponding to flow’s hashes, at

which point the flow is “found” (or a false positive was found). The duration for the

flow is an estimate calculated by determining the midpoint time for the bin the flow

was found in. For example if the flow is in a bin with a time range of 45-75 sec bin a

duration of 60 sec would be returned.

Figure 4.3 shows an example of the life of a flow as it is inserted, aged, and removed

from BDFT. In this example BDFT has bins with example time ranges of 0-15sec, 15-45sec,
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Figure 4.2: BDFT aging process

45-75sec, and 75-135sec, and the flow lasts for 55 seconds. The flow arrives just after Bin 1

was aged, and therefore the flow will be in Bin 1 for its full 15 second duration. In normal

operation the timer to expire Bin 1 is always running, and therefore, for example, a flow

could arrive when Bin 1 is just about to expire or at any other time. In Figure 4.3 the

“Expire Bins” box denotes the continuous process of checking all bins to see if they need

to be expired.

The following steps describe the BDFT operations taking place;

1. The new flow arrives

2. Its hashes are calculated based on IP Src/Dst, Port Src/Dst, and protocol type

3. The flow is added to Bin 1 by incrementing the counters corresponding to the hashes

4. After 15 seconds Bin 1 expires and its flows are moved to Bin 2

5. After an additional 30 seconds Bin 2 expires and its flows are moved to Bin 3
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Figure 4.3: Flow chart of the life of a flow in BDFT

6. After 55 seconds from the flow start, a TCP FIN is received for the flow, and the

removal process begins

7. The flow’s hashes are calculated as above

8. The Bins are searched for the flow’s hashes starting with Bin 1

9. The flow is found in Bin 3, so the counters corresponding to the hashes are decremented

in Bin 3

4.3 BDFT Extensions

The standard BDFT as described in section 4.2 will provide a basic level of performance

suitable for some applications. For applications requiring higher performance in terms of
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accuracy there are numerous ways to increase the accuracy of BDFT substantially. This

section presents several enhancements to both the accuracy and computational requirements

of BDFT. Many of these enhancements come at very little cost in terms of implementation

complexity or computing requirements, and therefore should be employed in most BDFT

implementations.

4.3.1 Enhanced Insertion and Removal

The accuracy and computational performance of BDFT can be improved if one can guaran-

teed that for each flow received, the insert and remove functions will be executed once and

only once. To be able to guarantee only one insert and removal per flow, the SYN/FIN/RST

packets cannot be used directly to control algorithm operation, as is done in standard BDFT.

SYN, FIN or RST packets are not reliable due to timeouts and lost packets, so a mid-point

router may not observe the same packets as the connection end points. Having an unknown

number of SYN/FIN/RST packets can lead to a case where there is an imbalance between

the number of SYN and FIN/RST packets. Since BDFT increments counters on SYN

packets, and decrements them on FIN/RST, this imbalance can cause incomplete removal

of flows (SYN > FIN/RST) or potential removal of multiple flows which share hashes by

setting one of the shared counters to zero (FIN/RST > SYN). Another effect of multiple

SYN packets per flow will be discussed in section 5.2.4; BDFT’s accuracy is reduced if any

counters overflow, so in the ideal case the counters would only be incremented once per

flow, and not once per SYN packet.

Balancing the number of SYN packets vs. the number of FIN/RST can be accomplished

using pre-filtering mechanisms such as Symmetric Connection Detection (SCD). Using SCD

also has the additional benefit of ensuring that BDFT counters are only incremented once

per flow. Section 3.1 describes the basic operation of SCD, which includes the ability to

monitor all active flows in a network and report only those that are fully complete to a

higher-level monitoring program, such as BDFT. Therefore SCD can be employed to meet

the guarantee of only one insert per flow, but balancing SYN vs. FIN/RST also requires

that only one removal notification be sent to BDFT per flow, regardless of the number of
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actual FIN/RST packets. The functionality required for FIN/RST can also be achieved

using SCD or a simple variant. A pair of Bloom filters could be employed to track all

of the flows which have already sent a FIN or RST, by adding the flow to the filter and

notifying BDFT of the removal if the flow is not already in the filter. These FIN/RST

Bloom filters could be maintained using a time-based rotational scheme similar to Dual-

Filter SCD (see section 3.2). BDFT’s accuracy can be increased substantially using these

techniques (accuracy increases are discussed further in chapter 5), therefore the the small

incremental memory cost to implement pre-filtering such as SCD in conjunction with BDFT

is a good design tradeoff.

4.3.2 TCP Timeouts - no FIN or RST

BDFT relies on the receipt of FIN or RST packets to signal the end of a TCP connection and

remove the flow from its present bin. However, it is possible for a TCP timeout to occur such

that no FIN or RST packet is ever sent on the connection. For example, when an Internet

connection goes down or a route changes, so packets no longer reach the router running

BDFT. In this case the flow is “hung” in BDFT and will never be removed. Eventually

hung flows overwhelm the long duration bins resulting in a dramatic loss in accuracy for

both long duration and short duration flows. As a result, timeouts must be accounted for

in environments where they are possible, typically about 0.1% of Internet flows result in a

timeout (see Table 6.3).

A simple approach to handling timeouts is to increase the size of the longer duration

bins to account for the extra flows, and “flush” the longest duration bin periodically. For

example, in a case where flows up to one hour in duration must be tracked, the oldest bin in

BDFT may have a lifetime of ten minutes, so the oldest bin would cover the 50-60 minute

range. When the oldest bin expires, its flows are no longer tracked, so flows which have

undergone a TCP timeout are flushed out of the BDFT array when the bin expires. This

solution should be acceptable for most implementations when a small increase in memory

usage is not a problem.

An alternate approach is to track all flows and detect when they undergo a TCP timeout
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(normally defined as two minutes of failure to respond to a request [35]). This tracking can

be accomplished through the use of a Bloom filter in combination with high-rate sampling

(1 in 10, or higher) of all packets. For every sampled packet the flow is entered into the

timeout-tracking Bloom filter, so the filter contains all the flows which have sent packets

in the last interval. The interval should be equal to the lifetime of the longest duration

BDFT filter. At the end of the interval the timeout-tracking Bloom filter is cleared. When

the BDFT aging process takes place the hashes which are being aged should be checked

against the timeout-tracking filter. If the hashes are not present (e.g., a packet for the flow

has not been received in the last interval) then those hashes which are not present in the

timeout-tracking filter and are present in the bin being aged should be removed from the

bin that is being aged. This solution provides early removal of flows which have timed out

at the expense of processing a much higher percentage of network traffic.

An additional source of timeouts is a change in routing path. BDFT requires that all

packets related to a connection pass through the network device that BDFT is running on,

and that the routing paths do not change.

4.3.3 False Negatives and Effects of False Positives

In some situations it is possible for BDFT to produce a false negative. This is a serious

error which is caused be several factors which will be explained in this section. A basic

characteristic of Bloom filters is that they can produce false positives but will never produce

a false negative result. The counting Bloom filters used in BDFT can produce a false

negative, but only if a counter overflows, so care should be taken to ensure no counters

overflow (also see section 5.2.4). These failure modes apply when a Bloom filter is used

independently, however when Bloom filters depend on each other, as in BDFT, further

error modes can arise.

The most prevalent error mode which can result in a false negative in BDFT is a removal

attempt that removes a flow from the wrong bin. This occurs when a removal search

generates a false positive, for example, that a flow is in bin three when it is actually in

bin ten. In this case the flow will be removed from bin three in error. The counters that
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will be decremented in bin three when the flow is removed actually belong to other flows,

which will have one or more of their counters decremented. The affected secondary flows

are now false negatives as they have been partially removed from their bin. In addition to

the flows being false negatives, they can now never be removed from the bin, so the counters

corresponding to their other hashes will never be decremented.

Reducing the affect of the false negative problem can be done in several ways. We

call these methods false positive correction, since they reduce the affect of false positive

removals, and when used in conjunction with BDFT we call them BDFT-FPC. A simple

approach to false positive correction is to try and reduce the number of false positives

encountered in removal searches by searching the most accurate bins first. Normally this

means searching the longer duration bins before the short duration bins. This is not an

ideal solution since most flows will be added and removed from the shortest duration bin,

and therefore searching longer duration bins is a waste of computational resources. This

solution can still result in false positive removals of longer duration flows.

Another approach is to maintain a list of any removals that are considered to potentially

be false positives. This approach relies on the fact that a false negative can never occur

during normal operation of a Bloom filter, so when a false negative does occur it is known

that there was a false positive removal associated with this flow. When this situation occurs

the list of potential false positive removals can be checked to determine which removal caused

the false negative, based on the counters that were decremented and the bin that they were

decremented in. The false removal operation can then be reversed and the correct removal

performed.

A third solution to this problem is the use of backup Bloom filters to track those entries

which are known to be false positive. The idea of using backup Bloom filters is derived from

work presented in the “Bloomier Filters” paper [37]. A small Bloom filter is maintained

representing all flows in the BDFT array, this filter must be equal in size to the smallest

Bloom filter in the BDFT array. Before a flow is inserted into the BDFT array the all-flow

filter is checked to see if there is a potential conflict between this flow and another flow

or set of flows which are already in the array. If there is a conflict, further processing can
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be performed to mark the flow as being a potential false positive, for example, by using

another Bloom filter. Additional state should be stored about potential false positive flows

to identify their hashes and bin. When a removal request is submitted for a false positive

flow the additional information about it can be used to determine the actual bin that the

flow is in.

4.3.4 Datapath Aggregation

For optimal performance, BDFT must process every SYN, FIN, and RST packet received at

the data path of a router or other network device. Given that a SYN/FIN/RST packet oc-

curs once out of every 20 packets in normal Internet traffic, processing every SYN/FIN/RST

packet results in a sampling rate of 1:20, which is exceeds the traditional sampling rates of

1:100 or 1:1000 for NetFlow/cFlowd. This raises a potential issue with the BDFT architec-

ture, as 1 in 20 sampling rate could exceed the memory and backplane resources of modern

routers. However, the effects of BDFT’s required sampling rate can be virtually eliminated

by two observations:

• BDFT requires a sample of 3 hashes (12 bytes) per SYN/FIN/RST packet. These

hashes are independent of each other, and are all of the information required by BDFT,

the actual packet data is not required.

• BDFT samples can be aggregated to reduce backplane and processing overhead, to

reduce the number of router backplane transactions.

For example, a small 120-byte SRAM buffer could be used at the datapath level to

buffer BDFT samples. A 120-byte buffer would hold 10 samples, and is approximately the

same size as the sFlow sampling size of 128 bytes [13]. In effect, buffering samples in this

way would reduce the backplane overhead used by BDFT by a factor of 10, resulting in an

equivalent sampling rate of 1:200. Larger buffers could be used to further reduce the rate.

A 1200 byte buffer would reduce the sampling rate to 1:2000. Also note that hashes do

not need to be 32 bits, they could be reduced to 24 bits for further reductions in backplane

bandwidth.
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4.4 BDFT Variations

The performance of BDFT as presented in this thesis is tied to the performance character-

istics of counting Bloom filters, as they were chosen as the data structure to implement the

bins with. Other variations of BDFT could use different data structures or combinations

of data structures to implement the bins, resulting in increased accuracy (up to 100%),

or reduced computational requirements. For example the bins could be implemented as

array-backed hash tables for 100% accurate tracking. Another configuration could use d-

left hash tables for the bins, or use a counting Bloom filter for the first bin for the reduced

computational requirements and d-left hashing for subsequent bins. Section 5.5 presents

a comparison of computational performance of bins implemented using d-left vs. counting

Bloom filters.



Chapter 5

Mathematical Analysis of Performance and Design

This chapter extends the high-level descriptions of SCD and BDFT given in Chapters 3 and

4 to a low-level mathematical analysis of accuracy and computational performance. The

design of a BDFT array is described in detail including exact descriptions of parameters and

formulas governing accuracy, and heuristics for the selection of bin sizes and time ranges.

5.1 Analysis Overview

The design of a BDFT array is determined by over five parameters of the algorithm as well

as the selection process for bin time ranges. In this section we describe the performance of

BDFT through statistical analysis of the effect of algorithm parameters. The performance

of BDFT can be characterized in several different ways according to the needs of the end

user, but we adopt the metric of expected search error as being representative of BDFT’s

performance to the largest number of users. The equations and heuristics in this section

describe the various trade-offs involved in designing a BDFT array, all of which affect the

search error rate. The major sections in this chapter cover the largest contributors to the

search error rate for both BDFT and SCD; the loading on each bin, the number of hash

functions, the number of overloaded counters, and the overall design of the BDFT array.

Also discussed is an analysis of SCD performance.

The complexity of BDFT requires that some assumptions be stated before further anal-

ysis of the algorithm can proceed. The bins in BDFT can be composed of any type of

44



45

data structure that supports the basic operations of insertion, removal and searching of

items based on a flow identifier. The analysis of BDFT in this section uses bins composed

of counting Bloom filters. Further, we assume that except where stated otherwise the

counting Bloom filters are implemented using three independent hash functions (k=3). As

described in section 4.3.1 BDFT operates most efficiently when only fully established flows

are added to the first bin, so we assume that only fully established flows are added to the

bin in this section. The use of SCD for pre-filtering can reduce the processing requirements

of BDFT by 95%, depending on network traffic characteristics (described in section 6.2).

We also assume that the flow removal recommendations of section 4.3.1 are followed, so

that there is only one insert and one removal per flow.

The performance of BDFT is governed by five basic choices; number of hashes, counter

size, bin size, bin time range configuration, and the hash functions used. These parameters

describe the internal configuration of BDFT, and therefore must be selected before imple-

menting the BDFT algorithm. These parameters are further described in section 5.2. When

choosing the parameters of BDFT the environment created by the network to be monitored

must be taken into account.

The major external variable affecting BDFT’s performance is the total number of active

flows that must be tracked. The number of active flows is normally related to network

bandwidth, but can also vary substantially with the traffic mix. For “clean” traffic with

little to no attack or port scanning attempts, active and complete flows can make up 95%

of the bandwidth on the link. This type of traffic would typically be seen from professional

users of bandwidth, e.g., large companies and institutions. Regular Internet traffic mix

typically has a much larger percentage of bandwidth comprised of port scanning and attack

traffic. In the case of general Internet traffic the number of active and complete flows will be

lower given the same bandwidth usage as “clean” traffic. See the comparison of the “clean”

n 12 and “not-so-clean” c 04 traces in section 6.1. Only the number of active and complete

flows needs to be considered as a factor in BDFT’s performance when using a pre-filtering

algorithm such as SCD; otherwise, all flows in the traffic mix must be considered.

BDFT’s performance is also affected by the distribution of flow durations in the network.
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The two traces described in section 6.1 highlight the differences in traffic mixes between

the general Internet and institutional traffic. Please refer to Figures 6.1 and 6.2. The

distribution of flow durations in the network determines how many flows will fall into a

BDFT bin for a specific time range. To achieve an efficient BDFT configuration, the time

ranges for the bins, and the bin sizes, should be chosen to account for the distribution of

flow durations by keeping the ratio of active flows to bin size fairly constant. Changes in

the distribution during operation have a relatively minor impact on BDFT, even if changes

in the distribution are large, as will be shown in section 5.4. Given the minor impact

on performance, the flow duration distribution should be used only for fine tuning BDFT

performance.

Calculation of the total search error rate requires one further assumption; we assume

that no counters are overloaded. This leads us to look at the probability of a false positive

in a single bin and then extrapolate to a search involving all bins. Overloaded counters

introduce another type of error that may or may not affect searching. There is no guarantee

that searches will be affected by overloaded counters, so we ignore the affect of overloaded

counters for search errors. In the design of a BDFT array the expected number of overloaded

counters should be kept to less than one per bin, as discussed in section 5.2.4.

5.2 BDFT Parameters

Analysis of BDFT involves several different parameters which affect algorithm performance

as defined in section 5.1. In this section we show mathematically the expected performance

of BDFT based on each of the parameters, taken independently of the others. Independent

analysis of BDFT parameters leads us to present a series of basic heuristics for choosing

a full set of BDFT parameters, given the goals of the algorithm designer. We choose a

heuristic approach due to the BDFT’s ability to adapt to a wide range of design goals and

network traffic characteristics, based on the decisions of the designer. The large number

of parameters in BDFT means that multi-dimensional graphs are required to describe the

full range of interaction of many of the parameters. Figure 5.1 shows the search error
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Figure 5.1: Probability of a false positive when varying the number of hash functions
(equation 5.3)

performance of a Bloom filter when the ratio of entries to total entries (n/m as defined

below) and the number of hash functions is varied. Figure 5.1 is computed from equation 5.3.

In most sections a simple two dimensional graph is presented which shows the overall shape

of the error curve with respect to the parameter being discussed. The heuristic approach

presented is built on top of the analysis of performance when individual parameters are

varied, and allows the designer to choose the best overall algorithm performance when their

specific performance requirements are known.

In the following sections, multiple properties of Bloom filters, counting Bloom filters,

and BDFT are described. These properties have a common nomenclature as described here:
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• m - The size of the Bloom filter (in total entries).

• n - The expected number of entries in the filter. Also, the number of items in the set.

• k - The number of independent hash functions per Bloom filter.

• c - The maximum count in an entry of a counting Bloom filter.

• item - A member of a set that is stored in one or more cells in a Bloom filter.

• cell - One location in a filter, this can be a bit, or a counter, or in d-left hashing can

contain a whole item.

• bucket - In d-left hashing a bucket contains a fixed number of cells.

5.2.1 General Guidelines for BDFT design

The following sections present specific guidelines and error rates for the design of a BDFT

filter. Maintaining high accuracy in BDFT requires some additional general guidelines that

should be followed in all implementations. In this section, we list the guidelines that should

be followed along with a brief description of the benefits of the guideline.

In section 4.3.1, techniques for enhanced insertion and removal of flows are presented,

and this chapter assumes that these techniques are employed in the design of the BDFT

array. Also presented in section 4.3.4, are additional techniques for reducing backplane

bandwidth, which, although they do not affect error rates directly, should be employed in

any BDFT implementation.

Insertion and removal of flows from the Bloom filters can be accomplished with many

variations of removal start point, search start point, and increment/decrement policies.

Some of these strategies may provide better performance depending on traffic characteris-

tics.

As mentioned in section 4.3.3, the removal of flows based on a false positive can have an

impact on the performance of BDFT. The long-term running performance of BDFT and the

effect of false positive removals is not directly analyzed in this chapter, and is left for future
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Figure 5.2: False positive rates in a Bloom filter with three hash functions (equation 5.3)

work. The effect of false positive removals can be reduced by implementing the techniques

presented in section 4.3.3, and by choosing an appropriate starting search bin based on the

BDFT array configuration and the traffic characteristics.

Finally, it is possible that some traffic monitoring applications would require that BDFT

operate on sampled network traffic or sampled SYN/FIN/RST traffic. The effects of sam-

pling on BDFT error rates are not analyzed in this chapter.

5.2.2 Bin Size and False Positive Rates in Bloom Filters

Bloom filters derive their remarkable space and time efficiency from a simple compromise;

Bloom filters are not an exact data structure, they have a small probability of returning

a false positive. A false positive occurs when an item which is not a member of the set

represented by a Bloom filter is checked for membership in the filter and the filter returns

that the item is a member. This situation occurs when other entries in the filter have set
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Figure 5.3: False positive rates in a Bloom filter with six hash functions (equation 5.3)

all the bits to true which correspond to the item which is not in the filter. For example,

consider a filter with k=3, and the following example items in the filter with hashes;

1. { 200, 300, 400 }

2. { 250, 350, 450 }

3. { 1000, 2000, 3000 }

When the filter is queried for an item with hashes, i.e., { 200, 350, 3000 }, the filter will

return that the item is a member of the set even though it is not. This occurs because the

“false item” matches hash 200 from item 1, 350 from item 2, and 3000 from item 3. Note

that a Bloom filter will never return a false negative, queries for an item that was added to

the set will always be true.

The probability of a false positive can be calculated by examining the probability that

a single bit in the filter is set to true (1). After n items have been inserted into a filter of
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size m with k hash functions in the worst case there will be (refer back to section 5.2 for

terminology);

{n ∗ k|n ∗ k < m} (5.1)

filter entries set to true. The probability of a bit being false (0) is given by;

P[cell == 0] =

(

1 −
1

m

)nk

(5.2)

The probability of a false positive is determined by by the probability of selecting k bits

that are set to true;

P[False Positive] =

(

1 −

(

1 −
1

m

)nk
)k

(5.3)

Figures 5.2 and 5.3 show the effect of the loading (n/m ratio) on the false positive rate.

Due to the exponential growth of the error rate it is desirable to operate Bloom filters with

n/m ratios of 0.04-0.05 when high accuracy is required. The effect of the number of hash

functions and calculating the optimal value of k for a given m and n is shown in section

5.2.3.

5.2.3 Number of Hash Functions

Bloom filters operate by utilizing a fixed number of independent hash functions, hereafter

referred to as k, which are used to select the locations in the filter where the each inserted

element is stored. The number of hash functions is a critical parameter which affects the

performance of both the false positive rate and the number of overflowed counters within a

BDFT bin. A high-level view when choosing the parameter k can be explained as a balance

between competing forces. A Bloom filter with a specified m/n ratio has an ideal k such

that;

k = ln 2 •
(m

n

)

(5.4)

Where k is rounded to the closest integer [21]. This criterion is balanced against the rise

in the number of overflowed counters as k increases, as described in section 5.2.4. Also the

computing requirements increase as k increases, due to the requirement to calculate the

k hash values for every packet (unless the hash functions are implemented in hardware).
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Figure 5.4: Change in false positive rates in a Bloom filter with change in k (equation 5.3)

Figures 5.2 and 5.3 show the error curves when three and six hash functions are used

respectively.

An additional complication in choosing the number of independent hash functions is

encountered when one considers a different number of hash functions for each bin in BDFT.

Depending on the implementation and other parameters chosen varying the number of hash

functions on a per-bin basis may lead to substantial performance improvements, since the

n/m will be different for each bin.

For all of the reasons listed in this section the parameter k should normally be the last

parameter chosen after all other parameters and variables have been decided upon. In other

words k can be used in the last stages of designing a BDFT array to fine tune the error
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Figure 5.5: Counter overflow rates in a Bloom filter with three hash functions (equation
5.5)

rate vs. computational performance requirements. Figures 5.4 and 5.1 show the effect of

various numbers of hash functions and n/m ratios on the performance of the filter, and can

be referred to when fine tuning BDFT performance.

5.2.4 Counter Sizes and Overflow

BDFT requires a data structure that supports, the insert of, searching for, and removal

of items. The standard Bloom filter with one bit (true/false) per entry does not support

removal of items without generating false negatives. False negatives can occur in a standard

Bloom filter due to the following property. A normal insertion can occur such that when

two items are inserted into a standard Bloom filter the two items share a common hash.
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Figure 5.6: Counter overflow rates in a Bloom filter with six hash functions (equation 5.5)

This overlap of hashes will result in normal operation as all (k ∗ 2) − 1 (k*2 due to two

inserted items, -1 due to the shared hash) locations in the filter are set to true, and searches

for these items will return true. However, if one of the items is removed, by setting it’s k

hash locations to false, then the shared hash will be set to false, and subsequent queries on

the item still in the filter will return a false negative.

Counting Bloom filters extend standard Bloom filters to have a small counter for each

filter entry instead of a single true/false bit [24]. When an item is inserted in the filter

the counters corresponding to its hashes are incremented. If two items share a common

hash value then the value of the counter corresponding to the common hash will be two.

Removal of items from a counting Bloom filter decrements the counters corresponding to
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the item’s hashes. In the case of the shared hash the entry is decremented to one, and

therefore, queries for the other item will still return true.

False negatives can still occur with counting Bloom filters if any of the counters in the

filter “overflow”. For a counting Bloom filter to maintain the properties of a Bloom filter,

counters which are already at their maximum value when an item is inserted can not be

incremented further. Further increments would cause an overflow to zero, which would

break the properties of Bloom filters. Once an insert attempt is blocked from incrementing

one or more of its counters due to overflow prevention, the counting Bloom filter will have a

false negative due to the following situation. When all except one of the items corresponding

to the overflowed counter have been removed the counter will be at zero since it was not

incremented for one of the flows. At this point, queries for the remaining flow in the filter

will return a false negative.

The expected number of overloaded counters can be calculated as follows. Each entry

in a Bloom filter can be considered independently when determining the probability that

it will be incremented. To cause an overflow the counter must be selected c + 1 times

out of n inserts (where c is defined as the maximum count in a counter before overflow in

section 5.2). We are interested in the probability of any overflow of the counter, as counter

can overflow multiple times, defined as c + 1, c + 2, c + 3 ... c + ∞. The probability of

having x matches in n inserts follows the binomial distribution if the counts are assumed

to be independent. For a given maximum count c, the probability of overflowing a single

counter/entry is given by;

P[Counter Overflow] = 1 −
c
∑

x=0

[

(

n

x

)

•

(

k

m

)x

•

(

1 −
k

m

)n−x
]

(5.5)

The number of expected overflows in a filter is then m * P[Counter Overflow]. Figures

5.5 and 5.6 show the expected number of overflowed counters in a filter with 100,000 total

entries. The figures demonstrate the dramatic effect of adding a single bit to the size of the

counters. This effect is shown by the 100,000X + difference in error rates between two and

three bit counters for a variety of n/m loadings.
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Overflow errors are a major factor when designing a BDFT array, as they dispropor-

tionally affect longer duration flows. This can be shown by considering that longer duration

flows will be the last ones removed from BDFT. When a series of flows are added to BDFT

within a short time all the flows land in the same bin, and if they share a common hash the

counter corresponding to the hash value can overflow. Once an overflow occurs the removal

of the first c flows to expire will proceed normally. In other words, the shorter duration

flows will be tracked normally. The last flow still in the filter is the longest duration flow,

but it is now a false negative after the removal of the shorter duration flows. The main

purpose of BDFT is to track long duration flows, so overflow errors must be minimized as

much as possible in any filter design, in the ideal case the expected number of overflowed

counters should be less than one.

5.2.5 Bin Time Ranges and Sizing

One of the most complex decisions when designing a BDFT array is choosing the bin

durations and sizes. This is also the most flexible aspect of the design, as BDFT can be

customized to give very fine-grained or coarse grained feedback on the duration of flows.

In section 5.4, we will present examples of a coarse-grained configuration which determines

if the flow is short, medium, or long duration, and a fine-grained configuration where the

approximate flow duration is returned by BDFT. This flexibility is derived from the selection

of parameters for the bins. Each bin in BDFT tracks flows over a specified length of time

and therefore has some simple parameters and performance guidelines. The parameters of

each bin are those presented in sections 5.2.4, 5.2.2, 5.2.3, and this section. We also present

search error rate guidelines take into account several factors, expected basic search error

rates, number of overflows, and the distribution of flow durations in network traffic.

Basic search error describes the worst case expected error rate when searching for a

specific flow in the BDFT array. This rate is dependent on the expected error rates for

all of the individual bins. As mentioned in section 4.2, queries for a specific flow are

performed by searching each bin individually, starting from the longest duration bin down

to some reasonable minimum bin. Each bin has a associated false positive error rate, P[False
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Positive in Bin x], based on the ratio of entries n/m and the number of hash functions k

(equation 5.3). The worst case search occurs when the desired flow is in the last bin to be

searched. To calculate the worst-case total error rate the success rates of all the searched

bins are multiplied together. For example a BDFT array with 10 filters of which 8 are

searched;

P[Search Error Rate] = 1 −

(

2
∏

x=10

(1 − P[False Positive in Bin x])

)

(5.6)

The accumulation of error when searching all of the bins, shown in equation 5.6, must

be taken into account when designing a BDFT array. As a result, the search error for

long-duration bins should be kept to a minimum, at least 99.9%+ accuracy is desirable.

The other major source of bin-specific error is the number of overflowed counters. The

number of expected overflowed counters per bin should be kept to a minimum as described

in section 5.2.4. This means keeping the n/m ratio and number of hash functions balanced

with the size of the counters in the filter. Typical counter sizes are either 3 or 4 bits for

heavily used filters, with 4 bits ensuring a very low probability of overflowed counters.

Once the parameters of the bins have been selected the next step is determining the flow

duration information that should be tracked. If a fine grained measure of flow duration is

required, then many bins with short time ranges can be used. In other applications, it may

only be required to classify certain flows as being “long duration”, for example, any flows

over 2 minutes. For a coarse-grained analysis a simple BDFT array design using three bins

is all that is required.

The prime consideration in choosing bin durations is the aging process for bins. During

aging all bins that need to be aged should expire at the same time, which allows an efficient

implementation of the aging algorithm by simply copying or updating pointers to bins that

have just expired from longer duration to shorter duration bins. Having all the bins expire

at the same time can be achieved by choosing bin durations that are a multiple of the

shortest bin duration, and a multiple of the next lowest bin duration. For example, the

three bin setup for coarse grained monitoring could use bins with durations of 20 seconds,

80 seconds, and infinite seconds. For fine grained monitoring many bins with short duration
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can be selected, i.e., 20, 20, 20, 40, 40, 40, 80, 80, 80, and etc.

Determining the required size of each bin is the final and most crucial step in the design

of a BDFT array. The sizing of the bins depends on the flow duration distribution that is

expected in the network. The expected distribution does not need to be exact, but should

provide a general guideline for the number of flows expected in each bin. For example, the

flow duration distribution described in section 6.1 shows that 75% of valid flows last less

than 15 seconds (also see section 6.1 for more information on flow duration distribution).

For a network where 100,000 valid flows are expected to be active at any time, a maximum

of 75,000 would be expected to be stored in a bin containing flows from 0-15 seconds. This

bin would need to be sized accordingly to reduce expected error rates. Higher duration

bins typically have fewer flows stored, and therefore can be sized smaller to reduce memory

usage. Bin sizes should be a multiple of a base size to increase the efficiency of the aging

algorithm.

Section 5.4 describes the full design of a BDFT array with SCD and FIN/RST filtering.

5.3 SCD Parameters and Performance

Dual-Filter SCD (chapter 3) uses standard Bloom filters to track the state of TCP connec-

tions, so the parameters of the Bloom filters form the the first set of parameters of SCD,

as described in section 5.2. Namely, m, n, and k ; the maximum size of the filter in entries,

the actual number of entries in each filter, and the number of independent hash functions,

respectively. These are the main parameters in determining the false positive rate (equation

5.3), and therefore the accuracy of Dual-Filter SCD. The false positive rate is the primary

consideration in SCD filter design.

Other parameters that must be considered when designing a Dual-Filter SCD filter are

related to the number of Bloom filters per direction of traffic flow, and the lower bound of

the maximum connection time. In the normal Dual-Filter SCD configuration there are two

filters per direction. Increasing the number of filters to three or four per direction may result

in a minor increase in accuracy at the expense of increased computational requirements. In
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this analysis we will only consider the case of two filters per direction.

The Bloom filter sizes in SCD should be matched to the number of flows created per

second. Both valid and invalid flows must be considered, including SYN packets which are

part of port scanning, DoS attacks, and all other SYN packets. Typical network traffic has

the SYN flag set in about 5% of the total packets. For example, on a fully utilized 1 Gbps

link processing about one million packets per second (125 bytes/packet on average), there

will be about 50,000 (5%) SYN packets per second. Of the 50,000 SYN packets it can be

roughly assumed that they will be split evenly between the two directions in SCD (direction

is defined in section 3.1), so there will be 25,000 new flows per second per direction in the

worst case, assuming that every SYN is part of a new flow. Once the average number of new

flows per second has been estimated the next step in designing an SCD filter is choosing an

acceptable lower bound of the maximum connection time (also defined in section 3.1).

The maximum connection time and lower bound of the maximum connection time are

related in Dual-Filter SCD, the lower bound is half the maximum connection time. Selection

of the maximum connection time parameter allows several factors to be balanced:

1. The maximum time a TCP connection is expected to take to complete (preferably

select the 99th or higher percentile of all connection times).

2. The average number of new flows per second.

3. The desired memory usage of Dual-Filter SCD.

In the above example there were an average of 25,000 new flows per second per direction.

Assuming that 99.7% of TCP flows in the network complete the connection handshake

within an average of 12 seconds, the lower bound of the maximum connection time is chosen

to be 8 seconds, making the maximum connection time 16 seconds. The total number of

flows that one filter must hold is therefore 8 * 25,000 = 200,000. To size a Bloom filter

such that there is a 1% expected false positive rate, the values for the expected number of

flows, number of hash functions, and false positive rate can be substituted into equation

5.3. In this example, a filter size of approximately 2,000,000 entries is required, leading to

a memory usage of 2,000,000 * 4 filters * 0.125 bytes/bit = 1,000,000 bytes.
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5.4 Putting it all together

In this section, we apply the techniques discussed in the previous sections of this chapter

and chapter 4 to design BDFT filters in two example cases. We choose two design goals

that represent possible real-world scenarios for flow duration. The first design requires a

general flow duration tracker that is capable of determining a flow’s duration with 50%-

80% accuracy from 60 minutes down to 45 seconds. The second design is focused on

simply classifying flows as long duration, which is defined as a flow duration longer than

two minutes. Using BDFT as a classifier in the second design allows the long duration

flows to be flagged for further processing by a deep packet inspection device to determine

if they are P2P traffic or other traffic types. For these filter designs the network traffic

is assumed to approximately follow the flow duration distribution presented for the C 04

trace in section 6.1. These filter designs and accuracy calculations utilize the methods for

enhanced insertion and removal of flows, as discussed in section 4.3.1.

The design of a BDFT array involves balancing the many parameters that affect search

performance, memory usage, and computational requirements. The primary parameters

in the design of a BDFT array are the number of flows that are expected to be in each

bin and the size of the bins, as this ratio determines the loading of a particular bin. As

a general guideline, to design a BDFT array with a high search accuracy means that the

long duration bins should have a search accuracy of at least 99.9+%. For the fine-grained

design the sizing of the long duration bins can therefore begin with the dual requirements

of at least 99.9% accuracy and at least 50% time accuracy.

The number of flows in each bin can be estimated from the flow duration distribution.

We determine the number of flows in each bin according to the following assumptions:

1. There are 1,000,000 terminating flows per hour.

2. Flows arrive at a uniform rate.

3. The flow duration distribution is uniformly distributed within a bin.
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Table 5.1: Expected active flows in bins (fine-grained design)

Bin Start Bin End Active Flows Arrival Rate Active Flows

Time (sec) Time (sec) Ending in Bin (Longer Dur) in Bin

0 15 1020.59 73.66 2125.48

15 45 517.33 39.17 1692.45

45 75 245.43 22.81 929.69

75 105 119.00 14.88 565.26

105 165 272.35 5.80 620.18

165 225 46.57 4.24 301.25

225 285 25.92 3.38 228.76

285 405 82.06 2.01 323.63

405 525 51.99 1.15 189.59

525 765 66.32 0.59 208.90

765 1245 71.95 0.29 213.22

1245 2205 99.05 0.09 183.48

2205 3165 33.34 0.02 51.09

3165 3600 8.87 0.02 26.62

From assumption 3 the average termination time of flows in a bin is half the bin duration

(Note that assumption 3 is worst-case, in normal traffic the distribution is skewed towards

shorter duration flows, resulting in fewer flows in the bin). The number of flows that

terminate in a given bin within a certain time can be directly read from the flow duration

distribution. Also the flows that are longer duration than the current bin, but are passing

through the bin must be taken into account. Given the above assumptions, the number of

flows active in bin b is given by Little’s equation, where the Average Time in Bin is half of

the bin duration:

Flows Ending in Bin = Average Time in Bin • Arrival Rate (ending in bin) (5.7)

Where the arrival rate is calculated from the flow duration distribution by the formula:

Arrival Rate (ending in bin) =
1,000,000 flows/hour • P[Flow Terminating in the Bin]

3600 seconds/hour

(5.8)
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Table 5.2: Expected active flows in bins (coarse-grained design)

Start End Active Flows Arrival Rate Active Flows

Time (sec) Time (sec) Ending in Bin (Longer Dur) in Bin

0 20 1445.20 61.00 2665.15

20 110 1433.28 13.22 2623.23

110 3610 2346.73 0.00 2346.73

Accounting for the contributions of longer duration flows to the flows in the bin requires

summing all the flows which are in the bin but will not terminate here, and instead are

moving to higher duration bins. Little’s equation still applies, but the Average Time in Bin

is now the full bin duration. Let n represent the number of bins and c be the current bin;

Arrival Rate (not ending in bin) =
1,000,000 flows/hour •

∑

n

i=c
P[Flow ends in Bin i]

3600 seconds/hour

(5.9)

Table 5.1 shows an example configuration of bin time ranges which match the require-

ments of the fine-grained design. The number of active flows expected in each bin was

calculated using equations 5.7, 5.8, and 5.9. Table 5.2 gives an example configuration for

the coarse-grained design. The number of active flows in each bin was calculated with slight

modifications to assumption #3 for the very long bin durations, to skew the average length

of time for each flow in a bin to shorter durations.

Once the bin time ranges and number of active flows in each bin has been determined

the bins can be sized. Heuristics for sizing the bins are as follows:

1. A short duration (10-15sec) medium accuracy bin (95%) should be used to filter the

large number of very short duration flows.

2. The short duration bins will not be searched in many cases, and therefore can be

designed to have a higher false probability error rate in order to save on memory.

3. The long duration bins should have high accuracy (99.9%) for good search accuracy.
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Table 5.3: Example BDFT array configuration (coarse-grained design)

Start End Max Entries # Flows P[false +] # overflows # Hash # Bits

0 20 131072 2665 0.00021 0.0720 3 2

20 110 131072 2623 0.00020 0.0676 3 2

110 3610 131072 2346 0.00014 0.0435 3 2

Table 5.4: Example BDFT array configuration (fine-grained design)

Start End Max Entries # Flows P[false +] # overflows # Hash # Bits

0 15 131072 2125 0.00011 0.0294 3 2

15 45 131072 1692 5.5E-05 0.0119 3 2

45 75 65536 929 7.2E-05 0.0086 3 2

75 105 65536 565 1.7E-05 0.0012 3 2

105 165 65536 620 2.2E-05 0.0017 3 2

165 225 32768 301 2E-05 0.0008 3 2

225 285 32768 228 8.8E-06 0.0003 3 2

285 405 32768 323 2.5E-05 0.0010 3 2

405 525 32768 189 5E-06 0.0001 3 2

525 765 32768 208 6.7E-06 0.0002 3 2

765 1245 32768 213 7.2E-06 0.0002 3 2

1245 2205 32768 183 4.6E-06 0.0001 3 2

2205 3165 16384 51 8E-07 0.0000 3 2

3165 3600 16384 26 1.1E-07 0.0000 3 2

4. The number of flows normally decreases logarithmically with the duration, so longer

duration bins should cover more time and be reduced in size.

5. The binning process introduces inaccuracy when the actual duration of the flow is not

the average duration of the bin, so longer duration bins should cover more time, and

the shorter duration bins less time. This keeps the relative inaccuracy involved in the

binning process to a minimum.
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Table 5.5: Example BDFT array theoretical performance

Design Memory Usage (bytes) Accuracy Expected # Overflows

Fine-Grained 180224 99.96% 0.055

Coarse-Grained 98304 99.95% 0.183

Example configurations which follow these heuristics are shown in Tables 5.3, and 5.4.

The performance of the fine-grained and coarse-grained designs is shown in Table 5.5.

5.5 Computational Requirements of BDFT

The computational requirements of BDFT can be calculated through analysis of the basic

BDFT operations, insert, remove, search, and aging. In this section we analyze the per-

formance of these operations and draw comparisons with another data structure that has

been suggested for stateful network flow tracking, d-left hashing [34] (d-left was introduced

in section 2.4.3). For this performance analysis it is assumed that counting Bloom filters

are used for the BDFT bins, although for some operations there may be other data struc-

tures such as space-code Bloom filters that would be more efficient. Note that for both

d-left hashing and counting Bloom filters the first step in every operation is to calculate the

hashes for the item, since this step is common to all operations it will not be included in this

analysis. For d-left hashing it is assumed that four hash functions are used and there are six

cells per bucket (see section 5.2 for terminology). For d-left hashing there is no suggested

way to store the cells in the buckets. For example, an array with an active/inactive flag

for each cell, or a doubly-linked list would work, but both carry additional computational

requirements not discussed in the d-left paper. D-left hashing implemented with the array

based scheme requires checking every cell on every operation, so the worst case perfor-

mance discussed below becomes the average performance, and maintaining a doubly-linked

list requires extra pointer operations. BDFT has one further general advantage over d-left

hashing, the computational requirements for scale in “constant time” vs. the number of

flows, whereas d-left scales logarithmically.
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Insertion of elements into BDFT requires modification of the first bin only. The current

counters corresponding to the items hashes must be read, incremented, and then updated

with the new values. This process requires k memory reads and k writes. D-left hashing

requires that the buckets corresponding to the hashes be searched for the incoming flow, at

worst this is 6*4 = 24 reads and compares (in our example with six cells/bucket). Once the

flow is confirmed not to be present the flow must be added to the least-filled bucket with

tie-breaks to the left, requiring another four comparisons and a memory write. For both

d-left hashing and BDFT, the memory reads can be parallelized in hardware.

Removal of items from BDFT requires searching the bins starting with the shortest

duration bin first. Given a nominal BDFT bin setup for fine-grained monitoring and nominal

Internet traffic, about 75% of searches will end with the first bin, about 15% will end in the

second, and some flows will require searching all bins. Searching one bin requires k memory

reads, and k comparisons. The removal operation is the reverse of insertion; decrement the

counters and write the new values to the filter. D-left hashing must search 6*4=24 buckets

in the worst case to find the flow, requiring 24 memory reads and comparisons. Once the

flow is found, d-left must update the doubly-linked list or the flag the cell inactive.

Searching for an item in BDFT starts with the longest duration bin and works down to

shorter duration bins, based on the assumption that the longer duration bins are the least

likely to generate a false positive. Searching is the most expensive operation in BDFT,

with the worst-case requiring reading the counters corresponding to the hashes in every bin

except the shortest. This would require k * (number of bins - 1) memory reads and the

same number of comparisons. The requirements for d-left hashing are the same as insertion

and removal, 24 reads and comparisons.

Aging of bins is one of the more expensive operations that must be performed during

BDFT operation. Depending on the implementation, aging bins may require merging count-

ing Bloom filters of different sizes, without overwriting the data in the recipient filter. In

this case, the merging process requires reading all of the entries in both filters, adding them

together, and writing the results to the longer-duration filter. In special cases the aging

process can be optimized. For instance, if both filters are the same size, and the recipient
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filter can be overwritten (because its contents were just aged to a longer duration bin), then

aging the filter is a simple pointer update. For d-left hashing with state maintenance, every

cell in the buckets must be read, a decision or comparison made, and its state updated. This

occurs every 15 seconds, or as often as whatever the minimum duration state represents.

In a nominal BDFT configuration only the shortest duration filter needs to be processed

every 15 sec, and the second shortest duration filter every 30 sec, and so on for all filters.

The longer duration filters need to be processed only every 5-10 min.

In summary, BDFT provides very good computational requirements in the average case.

Most operations require lookups in only one bin. Searches are the only operation which

require multiple bin searches in the average case.



Chapter 6

Experimental Analysis

This chapter describes the expected performance of BDFT and SCD when deployed in real-

world situations. Internet traffic traces are used to drive the experimental implementations

of BDFT and SCD to obtain an indicator of expected performance. Section 6.1 describes

the characteristics of the traces and shows that the traces we selected for performance

analysis constitute realistic and diverse examples of Internet traffic. We also present the

flow duration distribution for both traces, a metric that is rarely analyzed in most traffic

analysis studies. Section 6.2 describes the performance of our implementation of Dual-

Filter SCD. Section 6.3 describes the performance of BDFT and compares the performance

of BDFT with several other possible flow duration tracking methods.

6.1 Experimental Trace Characteristics

To verify and validate the real-world performance of SCD and BDFT, we implemented

an experimental test bed and used Internet traffic traces to drive the tests. We obtained

traces of Internet traffic from the well-known networking research organizations CAIDA [38]

and NLANR [39], with the two traces hereafter referred to as C 04 (CAIDA) and N 12

(NLANR). This section describes many of the intrinsic characteristics of these two traces

and explains why they are representative of the diverse extremes of Internet traffic. In

general, the C 04 trace represents normal “dirty” public backbone Internet traffic, with

many packets being invalid attempts at port scanning or DDoS attacks. This trace was

67
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Table 6.1: Trace characteristics

NLANR 2003-12 As a % CAIDA 2003-04 As a %

(N 12 ) of total (C 04 ) of total

Total Packets 196,956,306 202,510,985

Total TCP Packets 56,992,573 28.94% 175,418,691 86.62%

Total Bytes 46,472,308,705 95,944,872,321

Total TCP Bytes 41,482,633,988 89.26% 91,766,946,651 95.65%

Avg. Bandwidth (Mbit/s) 98.48 203.33

Avg. Bytes Per TCP Pkt. 727.86 523.13

Duration (seconds) 3600 3600

collected by CAIDA from both directions of an OC48 link at AMES Internet Exchange

(AIX) on Apr. 24, 2003, at Mountain View, CA, a west coast peering link for a large

ISP [38]. The second trace, N 12, was obtained by NLANR in December of 2003, from

their NCAR Gigabit tap (at the National Center for Atmospheric Research, Boulder) [39].

This trace represents the other end of the traffic spectrum from C 04, being fairly “clean”

and containing a low number of active flows and very little or no attack and port scanning

traffic.

Both traces represent one hour of Internet traffic. These long duration traces were

selected to demonstrate the performance of BDFT over long periods of time. Table 6.1

shows the basic characteristics of each trace. At this very coarse-grained level of traffic

analysis, both traces appear quite similar. The average bandwidth in both traces is roughly

similar at 100Mbps and 200Mbps, sufficient to demonstrate the performance of BDFT and

SCD on high speed links. The total number of packets is also very similar, however the

number of TCP packets is over three times higher in the C 04 trace. All other coarse-

grained trace characteristics are quite similar between the two traces, including average

bytes per TCP packet.

Table 6.2 shows the first striking difference between the C 04 and N 12 traces. The

percentage of total packets which are TCP packets with one of the main control flags
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Table 6.2: Trace characteristics for TCP control packets

NLANR 2003-12 As a % CAIDA 2003-04 As a %

(N 12 ) of total (C 04 ) of total

Total Packets 196,956,306 202,510,985

SYN 732,075 0.37% 15,608,680 7.71%

FIN 586,000 0.30% 6,084,826 3.00%

RST 52,628 0.03% 3,914,433 1.93%

Table 6.3: Trace characteristics for TCP 5-tuple flows

NLANR 2003-12 As a % CAIDA 2003-04 As a %

(N 12 ) of total (C 04 ) of total

Total Flows 352,410 11,215,873

Total Established Flows 274,473 77.88% 555,927 4.96%

Average Active Flows 11,284 901,245

Timed Out Flows 430 0.16% 4376 0.78%

Unique IPs 97,036 2,681,172

(SYN, FIN, RST) turned on is over ten times lower in the N 12 trace. Another striking

difference is the number of RST packets, the percentage of RST packets in the C 04 trace

is over sixty times higher than the N 12 trace. Given that RST packets typically indicate

abnormal connection termination, this large difference indicates that the C 04 trace has

many connections that do not follow normal TCP rules, such as port scanning or DoS

attack traffic.

Table 6.3 is a fine-grained look at the flows in each of the traces, and therefore highlights

the substantial differences between the two traces. The large percentage of SYN packets in

the C 04 trace can now be confirmed to be related to the large number of incomplete flows,

over 95% in this case. In other words, out of 15M SYN packets sent, only approximately

1.5M resulted in fully established flows. Also, due to the large number of incomplete

connection attempts (likely port scanning), there are a very high number of active flows on

average compared to the N 12 trace. For these reasons the C 04 trace is considered to be
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Figure 6.1: Flow duration distribution for trace N 12

a good example of “dirty” Internet traffic and the N 12 trace is a good example of “clean”

traffic (with almost 80% of flows being valid in the N 12 trace).

The average number of active flows gives a rough estimate of the number of flows actively

transmitting data in the trace. To calculate this metric, the flow timeouts are set to thirty

seconds for flows that have contained at least one FIN or RST, and ten minutes for all other

flows. Flows that began before the start of the trace, or have their connection phase span

the end of the trace, are ignored by the flow tracker and are not included in the results.

The distribution of flow durations is an important factor in the design of a BDFT filter

array, as described in section 5.4. The duration distribution allows a rough estimation of

the required size of the bins in BDFT, and therefore an estimation of the total memory

usage of the BDFT array. The distribution of flow durations is also an interesting measure

of the characteristics of a network trace. However, duration distributions are almost never
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presented in the literature, even in papers focused on trace analysis. One of the few papers to

discuss the number flows that last specific lengths of time is “Dragonflies and Tortoises” [36],

where they find that 75% of flows last less than two seconds. Knowledge of the duration

distribution can also be exploited by algorithm designers to enhance the performance and

memory requirements of network flow tracking. For example, BDFT makes use of the fact

that most flows are short duration to reduce the memory required for longer duration bins.

Figure 6.1 shows the flow duration distribution for the N 12 trace. Only flows that are

fully established within the trace are counted. This distribution shows that 75% of fully

established flows that are less two seconds long. This duration distribution is characterized

by the sharp falloff in the number of flows as the duration increases. The large increases at

certain durations, such as 80 seconds, indicate repeated transfers of specific sized data or

use of specialized applications.

Figure 6.2 shows the flow duration distribution for the C 04 trace. Like the N 12 trace

this duration distribution has a large number of flows that last less than two seconds, 50%

in this case. However, unlike the N 12 trace, the C 04 trace has a heavy-tailed duration

distribution, in keeping with the norms for general Internet traffic. Figure 6.3 shows the

duration distribution over a longer period, further detailing the heavy-tailed nature of the

durations in this trace.

6.2 Experimental Performance of SCD

Analysis and validation of SCD performance was accomplished by implementing SCD and

running experiments based on Internet traffic traces. To verify the SCD results, a 100%

accurate flow tracker was implemented which is able to track the connection status of every

flow observed in the traces. This flow tracker was implemented using standard per-flow

tracking and measurement techniques. We defined a flow to be the standard 5-tuple of IP

source and destination address, TCP source and destination port, and protocol type.

To evaluate the results of our experiments, the connection status reported from the flow

tracker was compared to the results returned from SCD, giving one of three results. First,
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Figure 6.2: Flow duration distribution for trace C 04

the SCD algorithm can indicate that the flow is established, in agreement with the flow

tracker, this counts as a successful indication by SCD. Second, SCD returns that the flow

is established, but the flow tracker indicates that the flow is not established, this is a false

positive and is a characteristic of Bloom filters as explained in section 3.1. Third, SCD can

fail to report an established flow, and the flow tracker indicates that the flow is established,

this is a false negative and occurs when the flow took longer to establish than the maximum

flow connection time parameter of SCD.

The SCD algorithm was implemented in the C programming language using standard

techniques of bitmap manipulation to implement the Bloom filters. Packets are read from

the trace and the Bloom filter hashes are generated by three independent hash functions

from the following packet header information; IP source and destination address, and TCP
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Flow Duration Distribution for C_04 - Extended
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Figure 6.3: Flow duration distribution for trace C 04 extended to 600sec duration

source and destination port. The Dual-filter SCD method, described in section 3.2, was

implemented by clearing the old filter for either direction and then simply updating pointers

to exchange the new and old filters. For every SYN packet in the trace the hashes are passed

to the SCD Packet function, which returns true if the flow is now established and false if it

is not. The connection establishment indication is stored and compared with the final state

of the flow to determine if it was a successful indication.

For our simulations two one-hour long traces were selected which are representative of

classic Internet traffic mixes. Out of 12.7 million flows in the C 04 trace only 556,000,

or 4.3%, are valid fully-established flows. This high invalid-flow ratio combined with the

high number of active flows make this trace a good worst-case test of SCD. The second
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Figure 6.4: SCD performance for trace C 04

trace trace, N 12, represents the other end of the traffic spectrum, containing a low number

of active traces and very little or no attack and port scanning traffic. Out of 358,048

flows in this trace 274,473 are valid (76.7%), making this trace an example of the best-case

performance of SCD.

Our experimental results are presented in Figure 6.4, Figure 6.5, and Table 6.4. To

evaluate the performance of SCD, we varied two parameters of the algorithm, filter size and

maximum connection time. Filter size represents the size of one Bloom filter in bits. Given

that dual-filter SCD uses four filters, the total memory usage can be calculated as:

Memory Usage =

(

bits per filter

8 bits/byte

)

∗ 4 (6.1)

The maximum connection time specifies the maximum time that can elapse between a SYN

packet in one direction and the response SYN from the other direction. Due to the nature of
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Figure 6.5: SCD performance for trace N 12

dual-filter SCD, the actual maximum connection time on a per-flow basis varies from Max

Conn Time / 2 to Max Conn Time. If this time is exceeded a false negative is generated.

Table 6.4 lists example configurations and shows that SCD is 99%+ accurate even at

only 32k bytes of memory usage. This level of memory usage indicates that SCD can be

implemented using SRAM at the datapath level of a router or other network device. By

increasing memory usage to 512k, over 99.9% accuracy can be achieved. As a comparison

of memory usage, our per-flow tracker used 24MB of memory to store about one million

flows, or forty-eight times more memory than the 99.9% accurate SCD.

An important observation can be made by analyzing the SCD results. Some of memory

usage plots in Figure 6.4 have a local minimum, indicating that there is an ideal setting

for the maximum connection time parameter. The ideal setting occurs when the false neg-

ative and false positive rates balance out. With a low maximum connection time setting
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Table 6.4: SCD parameters and accuracy

Trace Memory(bytes) Max.Conn.T ime Accuracy

N 12 524288 64 99.9996%

N 12 32768 16 99.9982%

C 04 524288 32 99.9685%

C 04 32768 8 99.0553%

many flows fail to establish before the filters are cleared, leading to a high number of false

negatives. As the maximum connection time parameter increases, the Bloom filters start

to become overloaded with flows, leading to a high number of false positives. The increase

in false positives is balanced by the decrease the number of false negatives as maximum

connection time increases. False negatives decrease for two reasons. First, the direct re-

duction; flows that take a long time to establish may take less than the new maximum

connection time, resulting in a false negative turning into a successful result. The second, is

less obvious; the increasing number of false positives from Bloom filter overloading result in

some beneficial errors; flows that still exceed the maximum connection time, and therefore

should be false negatives, are reported as being connected due to Bloom filter errors.

6.2.1 Computational Performance

To get a rough idea of the computational requirements and efficiency of SCD we ran our

experiment program through the Linux profiler gprof (for trace C 04). Table 6.5 shows an

abbreviated portion of the gprof output. The % time and self seconds columns represent

the length of time spent in the function. The functions FindFlow, AgeFlows, RemoveFlow,

and StoreFlow represent the computational requirements of our flow tracker, and the func-

tions in bold represent SCD. To decrease the lookup time in the naive flow tracker, flow

lookup was implemented using a one million element hash table, effectively reducing the

number of lookup operations per packet to one, given that there are less than one million

active flows. However even with this drastic attempt to increase the efficiency of the flow

tracker the lookup time still accounts for 37% of execution time, and in total the naive flow
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Table 6.5: Computational efficiency

%time selfsec calls name

36.94 1105.5 161273588 FindFlow

18.75 561.12 322547176 StoreComps o

14.19 424.76 330 AgeFlows

9.94 297.61 12225610 RemoveFlow

3.2 95.63 71668476 HashLookup

3.02 90.39 186368015 StoreFlow

1.06 31.85 41426043 HashSet

0.87 25.92 186368015 SCD Frame

0.63 18.98 11798670 NewFlow

0.2 5.84 13808681 HashAdd

0.17 5.13 12322186 PacketHash rev

0.15 4.53 11229407 PacketHash fwd

0.11 3.39 14359349 SCD Packet

0.09 2.72 12225610 ProcessFlowEnd

tracking functions account for 64%. By comparison, the performance advantage of an SCD

implementation is clear. Only 5.76% of execution time, or 172.29 seconds (which is the sum

of the SCD execution times, shown in bold) were required to process the 3600 second trace,

leading to a 11x reduction in processing requirements.

In addition to the intrinsic efficiency of SCD, note that in typical network hardware

many of the functions of SCD are implemented in hardware, such as the hash calculations,

and bit-wise manipulation and addressing. If these functions were implemented in hardware

it would essentially remove the PacketHash functions, and much of the processing time in

HashLookup, HashSet, and HashAdd.

6.3 Experimental Performance of BDFT

In this section, we perform real-world experimental analysis of BDFT performance to verify

the analytical results obtained in Chapter 5. Experimental analysis is performed using the
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two Internet traffic traces described in section 6.1. To compare and validate the results

from BDFT with the actual flow durations requires a 100% accurate flow tracker, similar

to the one used in section 6.2, that is capable of reporting the real duration of every flow in

the network. The duration of a flow is defined to be the time from the first SYN packet in

the flow to the first FIN or RST packet. A tracking success is defined to be an estimated

flow duration result that is within 50% of the actual flow duration, for flows that are greater

than thirty seconds in duration. This definition is based on the fact that BDFT is intended

to track long-duration flows to an approximate duration. In some situations a false negative

can be returned by BDFT (and also by the comparison strategies, see section 6.3.1), these

are always counted as a tracking failure.

The entire set of functionality required for BDFT was implemented in C. The bins were

implemented using counting Bloom filters with the standard item insertion and removal

policies. The basic BDFT functions of insertion, removal, searching, and aging the bins

were implemented according to the descriptions of those functions given in Chapter 4.

The design of the BDFT array is presented in section 5.4 for fine-grained tracking of flow

duration. The basic bin sizing in Table 5.4 allocates 128k entries for the first bin, which

we refer to as the base filter size. We tested BDFT at multiples of the base filter size (and

therefore the same multiple of all the other filter sizes) to analyze the performance of BDFT

at various memory usage levels.

As suggested in section 4.3.1, we include a SCD filter on the input to BDFT as well

as a simple FIN/RST-checking Bloom filter. The SCD filter was sized large enough to

be nearly 100% accurate to eliminate any affect on the BDFT performance results from

SCD errors. The same SCD filter was also used on the input to the TDBF tracker (see

section 6.3.1). Section 4.3.2 describes an issue that certain types of TCP timeouts cause for

BDFT. Mitigating these effects is still an open area of research, so for our implementation

we automatically remove flows after two minutes with no activity.

Finally, to perform a fair comparison of the performance of BDFT, we also implemented

two other flow duration tracking schemes. The other schemes were configured with equal or

greater available memory and sampling rate. Computational performance was not limited
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or measured, so while other schemes may require more computational resources than BDFT,

they were not penalized for increased CPU usage.

6.3.1 Other Flow Duration Strategies

The accuracy of BDFT, as presented in section 6.3.2 is a clear advantage. However, it

is possible that another simpler implementation could achieve similar accuracy with less

complexity. For this reason we selected two other strategies to track flow duration and

compared the results with BDFT. In this section we describe the operation of the two

competing duration tracking strategies.

To maintain similarity in the comparisons the memory usage and sampling rate were

balanced between all three strategies, BDFT, Naive Sampled, and TDBF.

Naive Sampled

A simple approach to tracking flow duration is based on the sampling idea used by NetFlow.

NetFlow operates by keeping a flow record for every flow that it sees in the network. When

a packet arrives its corresponding flow record is looked up and the appropriate statistics

and counters updated. If no flow record exists for the flow then a new one is created. Flow

records are removed if no packets are received from that flow for a short period of time,

typically 15 seconds. Likewise, flows records are also expired once they reach a certain age,

typically 15-30 minutes. When a flow record expires it is exported to an external collector

computer for further processing.

NetFlow has a number of disadvantages and problems when scaling to 10Gbps routers

which make it unsuitable for directly tracking flow duration. The first issue that arises is

that the timeouts required by NetFlow mean that any flow that is idle will timeout and its

duration will be lost, and more critically the maximum flow duration that can be tracked

is 15-30 minutes. NetFlow also has additional issues when scalability is considered. The

memory required to store the flow records quickly exceeds the capabilities of SRAM, and

due to the requirement to perform a search and memory writes with every packet received

NetFlow can not be implemented using DRAM when tracking every flow in a network. The
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solution to the scalability problems of NetFlow is to perform packet sampling where only

one in every hundred or thousand packets is sent to NetFlow for processing. Sampling raises

further problems when attempting to track flow duration, as discussed further in section

6.3.2.

The pure naive idea to track flow durations is to process every packet and keep a record

of every flow in the network. As part of each flow record timestamps could be maintained

for the first and last packet in the flow, and the flow records could be expired after a

long interval. Unfortunately this approach would share the same scaling problems as basic

NetFlow. So in our implementation of a naive duration tracker we make several sacrifices

to the overall accuracy to obtain time and space performance that is comparable to BDFT.

For our naive duration tracker implementation the tracker processes packets based on a

sampling rate of one in twenty, which matches BDFT’s effective sampling rate as explained

in section 4.3.4. The sampled packets are processed in a similar way to NetFlow. A flow

record table is maintained which contains entries consisting of a flow identifier and the start

and last packet timestamps. When a packet is sampled the table is searched for the flow

and the timestamps updated if the flow is already in the table, or the flow is added to the

table. If the table is full then the oldest flow in the table is expired, meaning it is removed

from the table.

Accuracy results for the naive implementation are determined by searching the flow

table every time a flow terminates. The estimated duration for the flow returned from the

naive tracker is compared with the actual time using the same comparison methods used

for BDFT.

Time-Decaying Bloom Filters

The second approach to tracking the duration of flows involves the use of a single Time-

Decaying Bloom filter. A time-decaying Bloom filter allows the multiplicity of an item in a

set to be tracked, with more recent insertions being weighted higher. Section 2.3 explains

the basic operation of time-decaying Bloom filters. We can modify the basic operation of

the TDBF slightly to track the length of time that an item has been in a set. The basic
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idea is to initialize all counters corresponding to an item’s hashes to a large initial value,

e.g., 40000. Then, in our implementation, every ten seconds all counters are decremented.

When a query is performed to determine how long the item has been in the set the duration

is equal to (40000 - current counter value) * 10 seconds. The detailed operation of the

modified TDBF can be explained through an explanation of its main operations, insert,

search, and removal.

To insert a flow into the TDBF all counters corresponding to the items hashes are set

to their maximum value according to how many bits are available in a counter. For our

implementation we used 16 bit counters for a maximum value of 65535. Counters are set

to the maximum value regardless of their current value.

To remove a flow from the TDBF all of the corresponding counters are set to 0.

To determine the duration of a flow the counters corresponding to the flows hashes are

read and the lowest value that is not 0 is selected. The duration can be calculated by the

formula (65535 - lowest counter val) * 10 seconds. This formula is based on the fact that

we decrement all counters every 10 seconds. If all counters are 0 then a failure to find the

flow is reported. It is important to note that choosing the lowest counter that is not 0

breaks the fundamental operation of Bloom filters where a 0 would normally indicate that

the item is not in the filter. Due to the nature of network traffic and assuming that queries

will only be performed for flow IDs that are guaranteed to be in the filer we can assume

that if any counters are not 0 then the flow has not been removed. This optimization in

our specific case results in a 100% improvement in accuracy. If the above assumption can

not be met then flows which have one or more counters set to 0 can not be assumed to be

in the network and must be returned as a lookup failure.

In terms of complexity when compared to BDFT the time-decaying Bloom filter is

somewhat simpler due to the fact that there is only a single Bloom filter instead of one per

bin.



82

Table 6.6: Algorithm performance comparison for C 04

Algorithm Memory Usage Number of Accuracy

(bytes) Overflowed Counters

BDFT 90112 902 79.24%

BDFT-FPC 90112 974 86.50%

BDFT 180224 134 96.15%

BDFT-FPC 180224 158 97.13%

BDFT 360448 16 99.59%

BDFT-FPC 360448 18 99.84%

BDFT 720896 1 99.98%

BDFT-FPC 720896 1 99.98%

Naive (1in 20) 524288 n/a 6.07%

Naive (1in 100) 524288 n/a 1.58%

TDBF 131072 n/a 58.79%

6.3.2 BDFT Performance Results

Tables 6.6 and 6.7 show the performance of BDFT and BDFT-FPC (section 4.3.3) with

various memory configurations. These tables also show the TDBF and Naive results for

comparison. The BDFT accuracy results exceeded our expectations. With only 0.257 bits of

storage required per flow BDFT achieves 99.59% accuracy on the C 04 trace, and with only

0.128 bits of storage required per flow BDFT achieves 99.55% accuracy on the N 12 trace.

Bits per flow is calculated by dividing the memory usage by the number of established flows

in an hour (352,410 for N 12 and 11,215,873 for C 04 ), as shown in Table 6.3. The number

of overflowed counters column is higher than the theoretical expectations derived in section

5.4. This is due to real-world factors not taken into account during the theoretical analysis,

such as timed-out flows, and errors introduced by the SCD filtering, and is discussed further

below.

The significant difference in per-flow memory requirements for the two traces is caused by

the differences in the flow duration distribution for the two flows. Referring back to Figures
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Table 6.7: Algorithm performance comparison for N 12

Algorithm Memory Usage Number of Accuracy

(bytes) Overflowed Counters

BDFT 1408 912 38.43%

BDFT-FPC 1408 920 52.81%

BDFT 2816 136 82.23%

BDFT-FPC 2816 137 93.33%

BDFT 5632 17 99.55%

BDFT-FPC 5632 17 99.58%

BDFT 11264 1 99.97%

BDFT-FPC 11264 1 99.97%

BDFT 22528 0 100.00%

BDFT-FPC 22528 0 100.00%

Naive (1in 20) 524288 n/a 8.34%

Naive (1in 100) 524288 n/a 3.82%

TDBF 131072 n/a 90.84%

6.1 and 6.2, we observe that the distribution for the N 12 trace is tightly concentrated in the

0-4 second range, whereas C 04 is relatively evenly distributed to higher durations. When

the flow durations are concentrated such that most flows end within one or two seconds,

the overall loading on the first and therefore subsequent bins is greatly reduced. In this

situation flows are added to the first bin and then quickly removed so the number of flows

actually stored in the bin at any time is quite low, resulting in lower memory requirements.

Tables 6.6 and 6.7 illustrate two important additional points. BDFT is able to achieve

100% (or near 100%) accuracy when the available memory is increased to the point where

almost all counter overflows are eliminated. Therefore, even though BDFT is an approxi-

mate method of tracking flow duration, it is applicable in situations where close to 100%

accuracy is required if sufficient memory is available. The memory requirements for achiev-

ing 100% or close to 100% accuracy were 10.37 bits/flow for the C 04 trace, and 0.657

bits/flow for the N 12 trace.

The second performance related result addresses the performance of BDFT under heavy
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load. By reducing the available memory to far below the expected requirements we were

able to simulate overload conditions for BDFT. For the C 04 this was at 90,112 bytes

and for N 12 it was at 1408 bytes. At these memory levels the number of overflowed

counters and false positive rates are far above normal design limits, resulting in reduced

accuracy. However BDFT continues to behave in a consistent manner, returning correct

results for many flows, instead of suffering a catastrophic breakdown of accuracy. This

behavior is important for deployment in real network conditions where spikes in traffic

could temporarily overload a BDFT array.

We observed several interesting results from the BDFT performance testing. The num-

ber of overflowed counters is substantially higher than expected. We theorize that this is

due to the number of flows that end up in the timeout state, as defined in section 4.3.2. The

flows which timeout end up “polluting” the higher duration bins with many dead flows. In

our case these bins were not designed to handle the increased number of flows due to the

timeouts, and therefore can become overloaded to the point of having overflowed counters.

This problem can be easily corrected by increasing the counter width to three bits. Table

6.3 shows the number of timed out flows for each trace.

Figures 6.6 and 6.7 compare the accuracy results for BDFT and BDFT-FPC for the two

traces. In both cases BDFT-FPC provides an increasing benefit as the accuracy decreases.

This effect is due to fact that the number of false positive removals (see section 4.3.3) will

increase as the probability of a false positive increases as the bins become increasingly full.

As the number of entries in the filters increases the number of overflowed counters will also

increase, this is the second major contribution to the number of errors reported by BDFT.

The benefits of implementing BDFT-FPC are high when the majority of errors are caused

by false positive removals, however if most errors are caused by overflowed counters then

BDFT-FPC will result in only small gains in accuracy. The cause of error in BDFT, false

positives or overflows, will vary based on the array configuration, e.g. 4-bit wide counters

will almost eliminate counter overflows. Therefore each BDFT array configuration must be

evaluated individually to determine the benefits of adding FPC.

In Figure 6.7, the BDFT and BDFT-FPC lines are almost parallel when the memory
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Figure 6.6: Accuracy of BDFT and BDFT-FPC for C 04

increases from 1408 to 2816 bytes. This indicates that at these memory levels the number of

BDFT errors is dominated by the number of overflowed counters, and false positive removals

have only a small effect. In comparison, in Figure 6.6 the benefit of BDFT-FPC can be

clearly seen between the 88K and 176K memory levels. From a point where BDFT and

BDFT-FPC are almost equal at 176K bytes, at 88K bytes BDFT-FPC is about 7% more

accurate than BDFT, which is a result of the false positive correction.

Figures 6.8 and 6.9 are the first of a series of scatter plots which demonstrate the

accuracy of BDFT and the other algorithms in a visual way. Flows are plotted as a point

where the actual flow duration and the flow duration estimated by BDFT (or Naive/TDBF)

meet. Flows that land on the the arrow through the diagonal of the graph are perfectly

accurate, and therefore any deviation from the centerline indicates some inaccuracy in the

duration reported. Flows which are false negatives are shown as an estimated duration of

one, along the bottom of the graph.

Figure 6.8 shows the best BDFT performance for the C 04 trace. The base filter size
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Figure 6.7: Accuracy of BDFT and BDFT-FPC for N 12

was 512k entries and FPC was on, resulting in 99.98% accuracy. Figure 6.9 shows a BDFT

implementation where reduced memory and computational requirements must be met. A

base filter size of 128k was used resulting in 180Kbytes of memory usage and 96.15% accu-

racy. The plot shows that some flows are false negatives (along the bottom of the graph),

and quite a few short duration flows are false positives in higher duration bins.

Figures 6.10 and 6.11 show the BDFT results for the N 12 trace. Two memory and FPC

configurations were selected which represent design requirements to have; 100% accuracy,

and low memory and computational requirements, respectively. Figure 6.10 shows the

results for a 100% accurate BDFT configuration of a base filter size of 16k and FPC turned

on. Figure 6.11 shows 99.55% accuracy with a base filter size of 4k and FPC off. In this

figure it is clear that the highest duration bins became overloaded and were reporting many

false positives for short duration flows in the 2205-3165 second and 3165-3600 second bins.

Figures 6.12 and 6.13 show Naive (1 in 20 sampling) and TDBF results for the C 04

trace. The Naive implementation is only 6.07% accurate in for this trace, with most flows
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Figure 6.8: BDFT performance 512k FPC - C 04

being reported as “not tracked” and ending up along the bottom of the graph. As expected

the naive implementation always under-reports the duration of flows, sometimes severely.

Of note is that the naive implementation does manage to track some long duration flows that

are also high bandwidth flows, due to the fact that high bandwidth means the probability

of them being sampled is high. The TDBF approach is 58.79% accurate and both under-

reports and over-reports the duration of flows. The notable point for TDBF performance

is the fact that no flow durations over 1000 seconds are reported by TDBF and there are

very few over even 500 seconds. This means that the longest duration flows, which are

potentially the ones the operator is most interested in, are not tracked successfully.

Figures 6.14 and 6.15 show Naive (1 in 20 sampling) and TDBF results for the N 12

trace. The Naive implementation is only 8.34% accurate in for this trace, and therefore,
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Figure 6.9: BDFT performance 128k - C 04

like with the C 04 trace, most flows are reported as “not tracked” and end up along the

bottom of the graph. Also, similar to the C 04 trace some long-duration high-bandwidth

flows are tracked successfully. TDBF was quite accurate for this trace, at 90.84%, due to

the relatively large amount of memory allocated for it (about 47x the BDFT requirements

for the same accuracy). However, TDBF has trouble tracking flows over 1000 seconds long,

these flows are either mis-reported or TDBF fails to report any value for the flow.
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Chapter 7

Concluding Remarks

This thesis presented two complimentary methods of performing network monitoring on a

per-flow basis, and for every flow observed on a network device. The first method, Symmet-

ric Connection Detection (SCD), filters incomplete flows out of a network stream, passing

only fully established flows on to a secondary flow tracking application. The second method,

Binned Duration Flow Tracking (BDFT), is a per-flow method of tracking the approximate

duration of all flows in a network, on a per-flow basis. Both methods introduce novel con-

cepts to the design of algorithms intended for deployment on high-speed routers. Before

our work on flow duration there was no acceptably accurate way to track flow duration on

high-speed routers, to the best of our knowledge.

We have shown that SCD provides a viable real-time method of reporting fully estab-

lished TCP flows. Using very little memory, SCD is able to achieve accuracy of 99%+.

In addition, SCD can be implemented using hardware-based bloom filters or on network

processors that use SRAM memory. The parameters of SCD are flexible and only need to

be set to approximately the ideal value to achieve high accuracy.

BDFT was shown to approach 100% accuracy with low per-flow memory usage, and is

able to classify flows to their correct state and duration. The design of a BDFT array is flex-

ible and can be customized to the needs of the network operator, for example, durations can

be tracked on a fine-grained basis, or BDFT can be used to classify flows as short, medium,

and long. We also showed that BDFT is suitable for deployment on high-speed routers

when coupled with SCD, and detailed the expected theoretical and real-world accuracy and

95
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computational requirements of BDFT.

The successful coupling of SCD and BDFT high-lights the effectiveness of SCD when

used to reduce the computational requirements placed on secondary processing applications.

We have demonstrated that SCD can reduce the number of flows that must be processed

by 95%, depending on the traffic mix. We anticipate that many network flow tracking

applications desire to process only those flows that complete their connection process, and

therefore will greatly benefit from the pre-filtering that SCD provides.

BDFT opens up a potential research area that was previously not available - the classifi-

cation of flows according to duration on high-speed routers. Duration classification opens a

number of new potential research areas. Duration-based routing (making routing and packet

scheduling decisions based on flow duration) could have a major impact on the quality of

service of general Internet traffic. BDFT will allow packet classification to rely on real-time

flow duration data, making real-time transport level classification, such as Peer-To-Peer

classification, feasible. When flow duration is combined with other traffic classification

metrics it may be possible to make automatic packet scheduling decisions based on appli-

cation type. As a final note, external network traffic analysis applications now have a way,

through BDFT, to access flow duration data in real-time, which could increase the accuracy

of analysis applications.

As an area of future work it may be possible that SCD can be used for port scan

detection and detection of some attacks, with slight modifications. The bloom filters can

be modified to counting bloom filters, and the hashes can be based on IP addresses only. In

this way it would be possible to track the number of failed connection attempts on a per-IP

basis, with some errors.

BDFT has several areas of potentially valuable future work. First off, the generaliza-

tion of BDFT to tracking state instead of duration requires further investigation. The

techniques presented in the “Beyond Bloom Filters” paper could be further evaluated for

their applicability to tracking duration, and a state-generalized BDFT performance could

be evaluated against the methods presented in the paper. As mentioned in section 4.3.2 an

efficient means of handling certain flow timeout conditions is required and would increase
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the long-run accuracy of BDFT, this issue is also mentioned in “Beyond Bloom Filters”.

In conclusion, I would once again like to thank those people and organizations mentioned

in the Acknowledgments section. This research would not be possible without the resources

and support generously provided.
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Appendix A

IP Hash Functions

These are the IP and TCP port hash functions used to generate the three Bloom filter

hashes for experimental testing of BDFT and SCD.

void PacketHash ip ( unsigned int daddr ,

unsigned int saddr ,

unsigned short source ,

unsigned short dest ,

unsigned int ∗hash1 ,

unsigned int ∗hash2 ,

unsigned int ∗hash3 )

{

unsigned int hash ;

hash = 0x9E34B213 ;

hash += daddr + dest ;

hash ˆ= hash << 7 ˆ hash >> 17 ;

hash += ( saddr ∗ 7) + source ;

hash ˆ= hash << 9 ˆ hash >> 5 ;

hash += ( ( unsigned int ) source ) ∗ 13 ˆ ( dest << 9 ) ;

hash ˆ= hash >> 3 ;
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hash += (( unsigned int ) des t ) ∗ 37 ˆ ( source << 17 ) ;

hash ˆ= hash << 5 ;

∗hash1 = hash ;

hash = 0x5B39AF34 ;

hash += ( daddr ∗ 5) + saddr ;

hash ˆ= hash << 9 ˆ hash >> 5 ;

hash ˆ= ( saddr ∗ 13) + source + dest ;

hash ˆ= hash << 11 ˆ hash >> 3 ;

hash += ( ( unsigned int ) source ) ∗ 3 ˆ ( dest >> 1 ) ;

hash ˆ= hash << 3 ;

hash += ( ( unsigned int ) des t ) ∗ 127 ˆ ( source << 11 ) ;

hash ˆ= hash << 7 ˆ hash >> 11 ;

∗hash2 = hash ;

hash = 0xB599CD98 ;

hash ˆ= ( ( daddr << 4) ˆ ( daddr >> 7) ) + dest ;

hash ˆ= hash << 15 ˆ hash >> 7 ;

hash ˆ= ( ( saddr << 5) ˆ ( saddr >> 3) ) + source ;

hash ˆ= hash << 3 ˆ hash >> 11 ;

hash ˆ= ( ( ( unsigned int ) source ) << 13) ˆ

( ( ( unsigned int ) source ) >> 3) + ( source ∗ 11 ) ;

hash ˆ= hash >> 7 ;

hash ˆ= ( ( ( unsigned int ) des t)<< 17) ˆ

( ( unsigned int ) des t ) + ( dest ∗ 17 ) ;

hash ˆ= hash << 9 ;

∗hash3 = hash ;

}


